8.已知奇函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈(0,1)時,函數(shù)f(x)=2x,則$f({log_{\frac{1}{2}}}23)$=( 。
A.$-\frac{16}{23}$B.$-\frac{23}{16}$C.$\frac{16}{23}$D.$\frac{23}{16}$

分析 由函數(shù)是奇函數(shù)得到f(-x)=-f(x)和f(x+2)=f(x)把則$f({log_{\frac{1}{2}}}23)$進(jìn)行變形得到-f($lo{g}_{2}\frac{23}{16}$),由$lo{g}_{2}\frac{23}{16}$∈(0,1)滿足f(x)=2x,求出即可.

解答 解:根據(jù)對數(shù)函數(shù)的圖象可知 $f({log_{\frac{1}{2}}}23)$<0,且$f({log_{\frac{1}{2}}}23)$=-log223;
奇函數(shù)f(x)滿足f(x+2)=f(x)和f(-x)=-f(x)
則$f({log_{\frac{1}{2}}}23)$=f(-log223)=-f(log223)=-f(log223-4)=-f($lo{g}_{2}\frac{23}{16}$),
因?yàn)?lo{g}_{2}\frac{23}{16}$∈(0,1)
∴-f($lo{g}_{2}\frac{23}{16}$)=$-{2}^{lo{g}_{2}\frac{23}{16}}$=$-\frac{23}{16}$,
故選:B

點(diǎn)評 考查學(xué)生應(yīng)用函數(shù)奇偶性的能力,函數(shù)的周期性的掌握能力,以及運(yùn)用對數(shù)的運(yùn)算性質(zhì)能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.從某企業(yè)生產(chǎn)的某種產(chǎn)品中隨機(jī)抽取100件,測量這些產(chǎn)品的某項(xiàng)質(zhì)量指標(biāo),由測量結(jié)果得到如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組[75,85)[85,95)[95,105)[105,115)[115,125)
頻數(shù)62638228
(1)在圖中作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)、中位數(shù)(保留2位小數(shù));
(3)根據(jù)以上抽樣調(diào)査數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.有一塊半徑為2的半圓形鋼板,計(jì)劃裁剪成等腰梯形ABCD的形狀,它的下底AB是半圓的直徑,上底CD的端點(diǎn)在半圓上.
(1)若這個梯形上底為CD=2a,求它的腰長x;
(2)求出這個梯形的周長y關(guān)于腰長x的函數(shù)解析式,并指出它的定義域;
(3)求這個梯形周長的最大值,并求出當(dāng)它最大時,梯形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓$\frac{y^2}{5}+{x^2}=1$與拋物線x2=ay有相同的焦點(diǎn)F,O為原點(diǎn),點(diǎn)P是拋物線準(zhǔn)線上一動點(diǎn),點(diǎn)A在拋物線上,且|AF|=4,則|PA|+|PO|的最小值為2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,則z=x-y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在二分法求方程f(x)=0在[0,4]上的近似解時,最多經(jīng)過12次計(jì)算精確度可以達(dá)到0.001.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:?x∈[0,2π],sinx≤1,則( 。
A.¬p:?x∈[0,2π],sinx≥1B.¬p:?x∈[-2π,0],sinx>1
C.¬p:?x∈[0,2π],sinx>1D.¬p:?x∈[-2π,0],sinx>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}滿足a1=1,nan+1=(n+1)an+(n+1)n(n∈N+),
(1)令cn=$\frac{a_n}{n}$,證明{cn}是等差數(shù)列,并求an;
(2)令bn=$\frac{1}{{\sqrt{a_n}\sqrt{{a_{n+1}}}}}$,求數(shù)列{bn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)$z=\frac{3}{1+i}$,則|z-1|為( 。
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案