如圖,在四面體ABCD中,若AB⊥CD,AD⊥BC.

求證:AC⊥BD.

答案:
解析:

  證明:作AO⊥平面BCD,垂足為O,則AO⊥CD.

  ∵AB⊥CD,∴CD⊥平面ABO.

  又BO平面ABO,

  ∴CD⊥BO.

  同理BC⊥DO.

  則O為△BCD的垂心,∴CO⊥BD.

  ∵AO⊥BD,CO∩AO=O,

  ∴BD⊥平面ACO.又AC平面ACO,

  ∴AC⊥BD.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點,G,H分別為DE,AF的中點,將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三角形ABC中,D,E,F(xiàn)分別為各邊的中點,G,H分別為DE,AF的中點,將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四面體ABCD中,BC⊥面ACD,DA=DC,E、F分別為AB、AC的中點.
(1)求證:直線EF∥面BCD;
(2)求證:面DEF⊥面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•武漢模擬)如圖,在四面體A-BCD中,AB=AD=
2
,BD=2,DC=1
,且BD⊥DC,二面角A-BD-C大小為60°.
(1)求證:平面ABC上平面BCD;
(2)求直線CD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四面體ABCD中,DA=DB=DC=1,且DA,DB,DC兩兩互相垂直,點O是△ABC的中心,將△DAO繞直線DO旋轉一周,則在旋轉過程中,直線DA與BC所成角的余弦值的取值范圍是(  )
A、[0, 
6
3
]
B、[0, 
3
2
]
C、[0, 
2
2
]
D、[0, 
3
3
]

查看答案和解析>>

同步練習冊答案