【題目】已知橢圓C: =1(a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程和長軸長;
(Ⅱ)設(shè)F為橢圓C的左焦點,P為直線x=﹣3上任意一點,過點F作直線PF的垂線交橢圓C于M,N,記d1 , d2分別為點M和N到直線OP的距離,證明:d1=d2

【答案】解:(Ⅰ)由題意可知橢圓的焦點在x軸上,2c=4,c=2, =2b,
由a2=b2+c2 , 解得a2=6,b2=2,
∴橢圓C的標(biāo)準(zhǔn)方程為 ,橢圓C的長軸長為
(Ⅱ)由(Ⅰ)可知點F的坐標(biāo)為(﹣2,0),設(shè)點P的坐標(biāo)為(﹣3,m),
則直線PF的斜率 ,
當(dāng)m≠0時,直線MN的斜率 ,直線MN的方程是x=my﹣2,
當(dāng)m=0時,直線MN的方程是x=﹣2,也符合x=my﹣2的形式,
設(shè)M(x1 , y1),N(x2 , y2),將直線MN的方程與橢圓C的方程聯(lián)立,
,消去x,得(m2+3)y2﹣4my﹣2=0,
其判別式△=16m2+8(m2+3)>0,
所以 , , ,
設(shè)T為線段MN的中點,則點T的坐標(biāo)為 ,
所以直線OT的斜率
又直線OP的斜率 ,
所以點T在直線OP上,
由三角形全等的判定和性質(zhì)可知:d1=d2
【解析】(Ⅰ)由橢圓的性質(zhì)可知:c=2, =2b,即可求得a和b的值,求得橢圓方程;(Ⅱ)由(Ⅰ)求得直線MN的方程,代入橢圓方程,由韋達(dá)定理及中點坐標(biāo)公式可知求得MN的中點T,由kOT=kOP , 由三角形全等的判定和性質(zhì)可知:d1=d2
【考點精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識,掌握橢圓標(biāo)準(zhǔn)方程焦點在x軸:,焦點在y軸:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣axlnx(a∈R)在x=1處的切線方程為y=bx+1+ (b∈R).
(1)求a,b的值;
(2)證明:f(x)<
(3)若正實數(shù)m,n滿足mn=1,證明: + <2(m+n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校后勤處為跟蹤調(diào)查該校餐廳的當(dāng)月的服務(wù)質(zhì)量,兌現(xiàn)獎懲,從就餐的學(xué)生中隨機(jī)抽出100位學(xué)生對餐廳服務(wù)質(zhì)量打分(5分制),得到如圖柱狀圖.
(Ⅰ)從樣本中任意選取2名學(xué)生,求恰好有1名學(xué)生的打分不低于4分的概率;
(Ⅱ)若以這100人打分的頻率作為概率,在該校隨機(jī)選取2名學(xué)生進(jìn)行打分(學(xué)生打分之間相互獨立)記X表示兩人打分之和,求X的分布列和E(X).
(Ⅲ)根據(jù)(Ⅱ)的計算結(jié)果,后勤處對餐廳服務(wù)質(zhì)量情況定為三個等級,并制定了對餐廳相應(yīng)的獎懲方案,如表所示,設(shè)當(dāng)月獎金為Y(單位:元),求E(Y).

服務(wù)質(zhì)量評分X

X≤5

6≤X≤8

X≥9

等級

不好

較好

優(yōu)良

獎懲標(biāo)準(zhǔn)(元)

﹣1000

2000

3000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )+2cos2x,將函數(shù)y=f(x)的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一個對稱中心是(
A.(﹣ ,1)
B.(﹣ ,1)
C.( ,1)
D.( ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù),﹣π<α<0),曲線C2的參數(shù)方程為 (t為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的普通方程;
(2)射線θ=﹣ 與曲線C1的交點為P,與曲線C2的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2為雙曲線的焦點,過F2垂直于實軸的直線交雙曲線于A、B兩點,BF1交y軸于點C,若AC⊥BF1 , 則雙曲線的離心率為(
A.
B.
C.2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)短軸的端點P(0,b)、Q(0,﹣b),長軸的一個端點為M,AB為經(jīng)過橢圓中心且不在坐標(biāo)軸上的一條弦,若PA、PB的斜率之積等于﹣ ,則P到直線QM的距離為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品計劃提價,現(xiàn)有四種方案,方案(Ⅰ)先提價m%,再提價n%;方案(Ⅱ)先提價n%,再提價m%;方案(Ⅲ)分兩次提價,每次提價( )%;方案(Ⅳ)一次性提價(m+n)%,已知m>n>0,那么四種提價方案中,提價最多的是(
A.Ⅰ
B.Ⅱ
C.Ⅲ
D.Ⅳ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知點D,E分別在邊AB,BC上,且AB=3AD,BC=2BE.
(Ⅰ)用向量 , 表示
(Ⅱ)設(shè)AB=6,AC=4,A=60°,求線段DE的長.

查看答案和解析>>

同步練習(xí)冊答案