【題目】已知{an},{bn}是公差分別為d1 , d2的等差數(shù)列,且An=an+bn , Bn=anbn . 若A1=1,A2=3,則An=;若{Bn}為等差數(shù)列,則d1d2= .
【答案】2n﹣1;0
【解析】解:∵{an},{bn}是公差分別為d1,d2的等差數(shù)列,且An=an+bn,
∴數(shù)列{An}是等差數(shù)列,又A1=1,A2=3,
∴數(shù)列{An}的公差d=A2﹣A1=2.
則An=1+2(n﹣1)=2n﹣1;
∵Bn=anbn,且{Bn}為等差數(shù)列,
∴Bn+1﹣Bn=an+1bn+1﹣anbn =(an+d1)(bn+d2)﹣anbn
=and2+bnd1+d1d2=[a1+(n﹣1)d1]d2+[b1+(n﹣1)d2]d1+d1d2
=a1d2+b1d1﹣d1d2+2d1d2n為常數(shù).
∴d1d2=0.
所以答案是:2n﹣1;0.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等差數(shù)列的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在R上滿足f(x)=2f(2﹣x)﹣x2+8x﹣8,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是( )
A.y=2x﹣1
B.y=x
C.y=3x﹣2
D.y=﹣2x+3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=﹣f(x).當(dāng)x∈[0,2]時(shí),f(x)=2x﹣x2 . 當(dāng)x∈[2,4]時(shí),則f(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若A、B是銳角△ABC的兩個(gè)內(nèi)角,則點(diǎn)P(cosB﹣sinA,sinB﹣cosA)在第象限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論:
(1)兩條直線都和同一個(gè)平面平行,則這兩條直線平行;
(2)兩條直線沒有公共點(diǎn),則這兩條直線平行;
(3)兩條直線都和第三條直線垂直,則這兩條直線平行;
(4)一條直線和一個(gè)平面內(nèi)無數(shù)條直線沒有公共點(diǎn),則這條直線和這個(gè)平面平行.
其中正確的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程3x=a2+2a在(﹣∞,1]上有解,則實(shí)數(shù)a的取值范圍是( )
A.[﹣2,﹣1)∪(0,1]
B.[﹣3,﹣2)∪[0,1]
C.[﹣3,﹣2)∪(0,1]
D.[﹣2,﹣1)∪[0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明命題:“已知a,b為實(shí)數(shù),則方程x2+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是( )
A.方程x2+ax+b=0沒有實(shí)根
B.方程x2+ax+b=0至多有一個(gè)實(shí)根
C.方程x2+ax+b=0至多有兩個(gè)實(shí)根
D.方程x2+ax+b=0恰好有兩個(gè)實(shí)根
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com