20.已知遞增的等比數(shù)列{an}中,a1,a2,a3分別為下表中第一、二、三行中某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表中同一行和同一列,
第一列第二列第三列
第一行3210
第二行6414
第三行9818
(1)求數(shù)列{an}通項(xiàng)公式;
(2)若數(shù)列{bn}滿足${b_n}={a_n}+{(-1)^n}ln{a_n}$,若n為偶數(shù),求數(shù)列{bn}的前n項(xiàng)和.

分析 (1)首先要結(jié)合所給列表充分討論符合要求的所有情況,根據(jù)符合的情況進(jìn)一步分析公比進(jìn)而求得數(shù)列{an}的通項(xiàng)公式;
(2)首先要利用第(1)問的結(jié)果對數(shù)列數(shù)列{bn}的通項(xiàng)進(jìn)行化簡,然后結(jié)合通項(xiàng)的特點(diǎn),利用分組法進(jìn)行數(shù)列{bn}的前n項(xiàng)和的求解.

解答 解:(1)當(dāng)a1=3時(shí),不符合題意;
當(dāng)a1=2時(shí),當(dāng)且僅當(dāng)a2=6,a3=18時(shí)符合題意;
當(dāng)a1=10時(shí),不符合題意;
所以a1=2,a2=6,a3=18,
∴公比為q=3,
故:an=2•3n-1,n∈N*.
(2)因?yàn)閎n=an+(-1)nlnan
=2•3n-1+(-1)nln(2•3n-1
=2•3n-1+(-1)n[ln2+(n-1)ln3]
=2•3n-1+(-1)n(ln2-ln3)+(-1)nnln3,
所以所以sn=2(1+3+…+3n-1)+[-1+1-1+1+…+(-1)n](ln2-ln3)+[-1+2-3+4-…+(-1)nn]ln3,
所以當(dāng)n為偶數(shù)時(shí),Sn=2×$\frac{1-{3}^{n}}{1-3}$+$\frac{n}{2}$ln3=3n+$\frac{n}{2}$ln3-1.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式,以及數(shù)列求和的方法,只要簡單數(shù)字運(yùn)算時(shí)不出錯(cuò),問題可解,是個(gè)中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.證明:
(1)$\frac{sinθ-cosθ}{tanθ-1}$=cosθ
(2)sin4α-cos4α=2sin2α-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=3sin(2x-$\frac{π}{6}$).
(1)求函數(shù)f(x)的最小正周期、最小值;
(2)求函數(shù)f(x)圖象的對稱中心;
(3)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知命題p:?x0∈Z,${x}_{0}^{2}$的個(gè)位數(shù)字等于3.則命題¬p:?x∈Z,x2的個(gè)位數(shù)字都不等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A=|0,1,2,3|,$B=\left\{{x\left|{\frac{x-3}{x-1}≤0}\right.}\right\}$,則A∩B=( 。
A.{1,2}B.{1,2,3}C.{2.3}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在邊長為2的正方形中隨機(jī)撒1000粒豆子,有380粒落到陰影部分,據(jù)此估計(jì)陰影部分的面積為1.52.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x-alnx,$g(x)=-\frac{1+a}{x}$.
(1)若a=1,求函數(shù)f(x)的極值;
(2)設(shè)函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l:y=kx+1與雙曲線C:3x2-y2=1相交于A、B兩點(diǎn).
(1)求實(shí)數(shù)k的取值范圍;
(2)當(dāng)A,B兩點(diǎn)分別在雙曲線兩支上,求k的范圍?
(3)當(dāng)A,B兩點(diǎn)在雙曲線同一支上,求k的范圍?
(4)求當(dāng)實(shí)數(shù)k為何值時(shí),以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知直線l過定點(diǎn)A(1,0),且與圓C:(x-3)2+(y-4)2=4相切,則直線l的方程為x=1或3x-4y-3=0.

查看答案和解析>>

同步練習(xí)冊答案