(2008•靜安區(qū)一模)已知復(fù)數(shù)z滿足方程z2-2z+3=0,則|z|=
3
3
分析:欲求復(fù)數(shù)z的模,只須根據(jù)復(fù)數(shù)z滿足方程z2-2z+3=0,求得其根即可,根據(jù)二次方程的求根公式得z=
2±2
2
i
2
=1±
2
i
即可求出z,從而解決問題.
解答:解:∵復(fù)數(shù)z滿足方程z2-2z+3=0,
∴z=
2±2
2
i
2
=1±
2
i

∴|z|=
1 2+(±
2
 2
=
3

故答案為
3
點(diǎn)評:本小題主要考查復(fù)數(shù)求模、復(fù)數(shù)方程的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•靜安區(qū)一模)(理)設(shè)
a
=(cosα,(λ-1)sinα),
b
=(cosβ,sinβ),(λ>0,0<α<β<
π
2
)
是平面上的兩個(gè)向量,若向量
a
+
b
a
-
b
相互垂直,
(1)求實(shí)數(shù)λ的值;
(2)若
a
b
=
4
5
,且tanα=
4
3
,求α的值(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•靜安區(qū)一模)執(zhí)行下面的程序框圖,如果輸入的k=50,那么輸出的S=
2548
2548

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•靜安區(qū)一模)(文)已知
a
=(cosα,3sinα),
b
=(3cosβ,sinβ),(0<β<α<
π
2
)
是平面上的兩個(gè)向量.
(1)試用α、β表示
a
b
;
(2)若
a
b
=
36
13
,且cosβ=
4
5
,求α的值(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•靜安區(qū)一模)下列以行列式表達(dá)的結(jié)果中,與sin(α-β)相等的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•靜安區(qū)一模)計(jì)算:
lim
n→∞
(2n-
4n2+2n-1
2n+2
)
=
1
1

查看答案和解析>>

同步練習(xí)冊答案