分析:(1)由題設(shè)條件,令n=1,得a
2=
,a
2-a
1-1=
-
-1=-
,再由b
n=a
n+1-a
n-1,b
n+1=a
n+2-a
n+1-1,得到
=
=
.所以b
n}是等比數(shù)列.
(2)由a
n+1-a
n-1=-
×
,知a
2-a
1-1=-
×
,a
3-a
2-1=-
×
,a
n-a
n-1-1=-
×
,將以上各式相加得到數(shù)列{a
n}的通項(xiàng).
解答:解:(1)證明:a
1=
,2a
n+1=a
n+n,
∵a
2=
,a
2-a
1-1=
-
-1=-
,
又b
n=a
n+1-a
n-1,b
n+1=a
n+2-a
n+1-1,
∴
=
=
=
=
.
b
n=-
×(
)
n-1=-
×
,
∴{b
n}是以-
為首項(xiàng),以
為公比的等比數(shù)列.
(2)∵a
n+1-a
n-1=-
×
,
∴a
2-a
1-1=-
×
,
a
3-a
2-1=-
×
,
∴a
n-a
n-1-1=-
×
,
將以上各式相加得:
∴a
n-a
1-(n-1)=-
(
+
++
),
∴a
n=a
1+n-1-
×
=
+(n-1)-
(1-
)=
+n-2.
∴a
n=
+n-2.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和綜合應(yīng)用,解題時(shí)要認(rèn)真審題,注意累加求和法的合理運(yùn)用.