已知f(x)=lnx,(m<0),直線l與函數(shù)f(x)、g(x)的圖像都相切,且與函數(shù)f(x)的圖像的切點(diǎn)的橫坐標(biāo)為1。
(Ⅰ)求直線l的方程及m的值;
(Ⅱ)若h(x)= f(x+1)-g′(x),求函數(shù)h(x)的最大值;
(Ⅲ)求證:對(duì)任意正整數(shù)n,總有
解:(Ⅰ)依題意知,直線的斜率,
,故直線與函數(shù)f(x)的圖像的切點(diǎn)坐標(biāo)是(1,0),
∴直線的方程為y=x-1,
又∵直線的圖像也相切,
∴由,得,

∵m<0,
∴解得m=-2。
(Ⅱ),

,
>0,解得:-1<x<0;
<0,解得:x<-1(舍去)或x>0,
∴h(x)在(-1,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,
∴當(dāng)x=0時(shí),h(x)取得最大值h(0)=2。
(Ⅲ)∵由(II)知:當(dāng)x>-1時(shí),,即,
∴當(dāng)x>-1時(shí),,當(dāng)且僅當(dāng)x=0時(shí)等號(hào)成立,
,故,
。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
lnx,x>0
x+2,x<0
,則f(x)>1
 的解集為(  )
A、(-1,0)∪(0,e)
B、(-∞,-1)∪(e,+∞)
C、(-1,0)∪(e,+∞)
D、(-∞,1)∪(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx-
a
x

(I)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;
(II)若f(x)在[1,e](e是自然對(duì)數(shù)的底)上的最小值為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=
3
2
-
a
x
,(a∈R)

①若方程e2f(x)=g(x)在區(qū)間[
1
2
,1]
上有解,求a的取值范圍;
②若函數(shù)h(x)=
1
2
x2-ax+(a-1)f(x)(a≥1)
,討論函數(shù)h(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)已知f(x)=
lnx,(x>0)
ex.(x≤0)
(e=2.718…),則不等式f(x)-1≤0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州一模)已知f(x)=lnx,g(x)=
1
3
x3+
1
2
x2+mx+n
,直線l與函數(shù)f(x),g(x)的圖象都相切于點(diǎn)(1,0).
(1)求直線l的方程及g(x)的解析式;
(2)若h(x)=f(x)-g′(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的極大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案