△ABC的外接圓半徑為R=2,a:b=3:4,c=60°,則a=________,b=________.

答案:略
解析:

,


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,A、B、C分別是三個內(nèi)角,已知
2
(sin2A-sin2C)=(a-b)sinB,又△ABC的外接圓半徑為
2
,則角C為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a=x2-x+1,b=x2-2x,c=2x-1,若a,b,c分別為△ABC的相應三邊長,
(1)求實數(shù)x的取值范圍;
(2)求△ABC的最大內(nèi)角;
(3)設(shè)△ABC的外接圓半徑為R,內(nèi)切圓半徑為r,求
Rr
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,滿足(a-c)(sinA+sinC)=(a-b)sinB,且△ABC的外接圓半徑為
2

(Ⅰ)求角C;
(Ⅱ)求△ABC面積S的最大值,并判斷此時的三角形形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊長分別為a、b、c,且sinAcosB=
1
3
,sinBcosA=
1
6
,△ABC的外接圓半徑R=3.
(1)求角C.
(2)求
a
b
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的外接圓半徑R=
3
,角A,B,C的對邊分別是a,b,c,且
2sinA-sinC
sinB
=
cosC
cosB

(1)求角B和邊長b;
(2)求S△ABC的最大值及取得最大值時的a,c的值,并判斷此時三角形的形狀.

查看答案和解析>>

同步練習冊答案