【題目】已知函數(shù)f(x)=2x+1(1≤x≤3),則( )
A.f(x-1)=2x+2(0≤x≤2)
B.f(x-1)=2x-1(2≤x≤4)
C.f(x-1)=2x-2(0≤x≤2)
D.f(x-1)=-2x+1(2≤x≤4)
【答案】B
【解析】因?yàn)閒(x)=2x+1,所以f(x-1)=2x-1.因?yàn)楹瘮?shù)f(x)的定義域?yàn)閇1,3],所以1≤x-1≤3,即2≤x≤4,故f(x-1)=2x-1(2≤x≤4). 故答案為:B由復(fù)合函數(shù)定義域的求法,利用整體思想求出x的取值范圍即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f (x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),y=f (x)是減函數(shù),若|x1|<|x2|,則( )
A.f (x1)﹣f (x2)<0
B.f (x1)﹣f (x2)>0
C.f (x1)+f (x2)<0
D.f (x1)+f (x2)>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)求證f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a﹣1)+2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是( )
A.接近0的實(shí)數(shù)可以構(gòu)成集合
B.R={實(shí)數(shù)集}
C.集合{y|y=x2﹣1}與集合{(x,y)|y=x2﹣1}是同一個(gè)集合
D.參加2016年金磚國(guó)家峰會(huì)的所有國(guó)家可以構(gòu)成一個(gè)集合
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班數(shù)學(xué)課代表給全班同學(xué)出了一道證明題,以下四人中只有一人說(shuō)了真話(huà),只有一人會(huì)證明此題。甲:我不會(huì)證明。乙:丙會(huì)證明。丙:丁會(huì)證明。。何也粫(huì)證明。根據(jù)以上條件,可以判定會(huì)證明此題的人是( )
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法不正確的是( )
A.空間中,一組對(duì)邊平行且相等的四邊形是一定是平行四邊形
B.同一平面的兩條垂線(xiàn)一定共面
C.過(guò)直線(xiàn)上一點(diǎn)可以作無(wú)數(shù)條直線(xiàn)與這條直線(xiàn)垂直,且這些直線(xiàn)都在同一個(gè)平面內(nèi)
D.過(guò)一條直線(xiàn)有且只有一個(gè)平面與已知平面垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 任何事件的概率總是在(0,1]之間
B. 頻率是客觀(guān)存在的,與試驗(yàn)次數(shù)無(wú)關(guān)
C. 隨著試驗(yàn)次數(shù)的增加,事件發(fā)生的頻率一般會(huì)穩(wěn)定于概率
D. 概率是隨機(jī)的,在試驗(yàn)前不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·吉安二模)若空間三條直線(xiàn)a,b,c滿(mǎn)足a⊥b,b∥c,則直線(xiàn)a與c( )
A. 一定平行 B. 一定相交
C. 一定是異面直線(xiàn) D. 一定垂直
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com