19、如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC.E是PC的中點(diǎn).
(1)證明:PA∥平面EDB;
(2)證明:DE⊥平面PBC.
分析:(1)記BD中點(diǎn)為O,連OE,由O,E分別為AC,CP中點(diǎn),由中位線定理得OE∥PA,再由線面平行的判定定理得PA∥平面EDB;
(2)由PD⊥平面ABCD得DE⊥BC,DE⊥PC.由線面垂直的判定定理得DE⊥平面PBC.
解答:解:(1)記BD中點(diǎn)為O,連OE,
由O,E分別為AC,CP中點(diǎn),
∴OE∥PA
又OE?平面EDB,PA?平面EDB,
∴PA∥平面EDB.(5分)

(2)由PD⊥平面ABCD∴PD⊥BC又CD⊥BC,
∴BC⊥平面PCD,DE⊥BC.(8分)
由PD=DC,E為P中點(diǎn),故DE⊥PC.
∴DE⊥平面PBC(10分)
點(diǎn)評:本題主要考查線與線,線與面,面與面的位置關(guān)系和線面平行和線面垂直的判定定理的靈活運(yùn)用,培養(yǎng)學(xué)生形成知識(shí)網(wǎng)絡(luò)及知識(shí)間相互轉(zhuǎn)化的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案