如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=PA,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC.
(Ⅰ)求證OD∥平面PAB;
(Ⅱ)求直線OD與平面PBC所成角的大。
【答案】分析:法一:(Ⅰ)要證OD∥平面PAB,只需證明平面PAB內(nèi)直線PA與OD平行,就是OD∥PA,即可證明OD∥平面PAB;
(Ⅱ)首先利用三垂線定理作出直線OD與平面PBC所成角,
就是取BC中點(diǎn)E,連接PE,則BC⊥平面POE作OF⊥PE于F,連接DF,得到
OF⊥平面PBC,然后解三角形求出角即可;
法二:距離空間直角坐標(biāo)系,利用共線向量證明(Ⅰ);利用向量的數(shù)量積求解(Ⅱ).
解答:解:方法一:
(Ⅰ)∵O、D分別為AC、PC中點(diǎn),
∴OD∥PA又PA?平面PAB
∴OD∥平面PAB
(Ⅱ)∵AB⊥BC,OA=OC,∴OA=OB=OC,
又∵OP⊥平面ABC
∴PA=PB=PC.取BC中點(diǎn)E,連接PE,則BC⊥平面POE作OF⊥PE于F,連接DF,則OF⊥平面PBC
∴∠ODF是OD與平面PBC所成的角.在Rt△ODF中,sin∠ODF=
∴OD與平面PBC所成的角為arcsin

方法二:∵OP⊥平面ABC,OA=OC,AB=BC,
∴OA⊥OB,OA⊥OP,OB⊥OP.以O(shè)為原點(diǎn),射線OP為非負(fù)z軸,建立空間直角坐標(biāo)系O-xyz(如圖),
設(shè)OP=h,則P(0,0,h).
(Ⅰ)∵D為PC的中點(diǎn),
,
.∴.∴OD∥平面PAB.
(Ⅱ)∵PA=2a∴,
,可求得平面PBC的法向量

設(shè)OD與平面PBC所成的角為θ,
,
∴OD與平面PBC所成的角為arcsin
點(diǎn)評(píng):本題考查直線與平面平行,直線與平面所成的角,考查空間想象能力,邏輯思維能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實(shí)數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時(shí),tanθ的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
(Ⅰ)求證:DE‖平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點(diǎn)繞三棱錐側(cè)面一圈回到點(diǎn)A的最短距離是
3
,則PA=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點(diǎn)D,E分別在棱
PB,PC上,且BC∥平面ADE
(I)求證:DE⊥平面PAC;
(Ⅱ)當(dāng)二面角A-DE-P為直二面角時(shí),求多面體ABCED與PAED的體積比.

查看答案和解析>>

同步練習(xí)冊(cè)答案