已知直線l1為拋物線在點()處的切線,l2為該曲線的另一條切線,且,求直線l2的方程.

解:y´=x    設(shè):l1 ,l2斜率分別為k1,k2   則k1=1   又 

 ∴k2= -1

設(shè)l2與拋物線的切點為(x0,y0)   則x0= -1 

 ∴   ∴l2:

即:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線L與拋物線C:x2=4y相切于點P(2,1),且與x軸交于點A,O為坐標原點,定點B(2,0)
(1)求點A的橫坐標.
(2)設(shè)動點M滿足
AB
BM
+
2
|
AM
|=0
,點M的軌跡K.若過點B的直線L1(斜率不等于0)與軌跡K交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1:y=2x+m(m<0)與拋物線C1:y=ax2(a>0)和圓C2:x2+(y+1)2=5都相切,F(xiàn)是C1的焦點.
(1)求m與a的值;
(2)設(shè)A是C1上的一動點,以A為切點作拋物線C1的切線l,直線l交y軸于點B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點M在一條定直線上;
(3)在(2)的條件下,記點M所在的定直線為l2,直線l2與y軸交點為N,連接MF交拋物線C1于P,Q兩點,求△NPQ的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①拋物線y=-2x2的焦點坐標是(0,-
1
8
)
;
②已知直線l1:ax+3y-1=0,l2:x+by+1=0則l1⊥l2充要條件是
a
b
=-3
;
(mx-
1
x
)10
的展開式中x4項的系數(shù)為210,則實數(shù)m的值為1;
④回歸直線
?
y
=bx+a
必過點(
.
x
,
.
y
)

其中結(jié)論正確的是
①④
①④
.(將所有正確結(jié)論的序號都寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在原點,焦點為(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知直線l1:y=kx+b(b>0)交拋物線C于A,B兩點,M是線段AB的中點,過M作x軸的垂線交拋物線于點N.是否存在實數(shù)k,使點N在以AB為直徑的圓上?若存在,求出k的所有的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案