精英家教網 > 高中數學 > 題目詳情
(2004•黃埔區(qū)一模)已知復數z-1的輻角為
6
,z+1的輻角為
π
3
,則復數z等于( 。
分析:C和D均有兩組答案,不合題意.在A中,由z=
1
2
+
3
2
i
,知z-1=-
1
2
+
3
2
i
,輻角為
3
;z+1=
3
2
+
3
2
i
,輻角為
π
6
.在B中,由z=-
1
2
+
3
2
i
,知z-1=-
3
2
+
3
2
i
,輻角為
6
;z+1=
1
2
+
3
2
i
,輻角為
π
3
解答:解:∵C和D均有兩組答案,∴不合題意.
在A中,∵z=
1
2
+
3
2
i

∴z-1=-
1
2
+
3
2
i
,輻角為
3
;z+1=
3
2
+
3
2
i
,輻角為
π
6

故A不正確.
在B中,z=-
1
2
+
3
2
i
,
∴z-1=-
3
2
+
3
2
i
,輻角為
6
;z+1=
1
2
+
3
2
i
,輻角為
π
3

故B正確.
故選B.
點評:本題考查復數的三角形式的應用,是基礎題.解題時要認真審題,注意代入法和排除法的運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2004•黃埔區(qū)一模)以橢圓
x2a2
+y2
=1(a>1)短軸一端點為直角頂點,作橢圓內接等腰直角三角形,試判斷并推證能作出多少個符合條件的三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2004•黃埔區(qū)一模)已知,二次函數f(x)=ax2+bx+c及一次函數g(x)=-bx,其中a、b、c∈R,a>b>c,a+b+c=0.
(Ⅰ)求證:f(x)及g(x)兩函數圖象相交于相異兩點;
(Ⅱ)設f(x)、g(x)兩圖象交于A、B兩點,當AB線段在x軸上射影為A1B1時,試求|A1B1|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2004•黃埔區(qū)一模)設集合A={a,b},且A∪B={a,b,c},那么滿足條件的集合B共有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2004•黃埔區(qū)一模)已知
a
=(1,2),
b
=(x,1),當(
a
+2
b
)⊥(2
a
-
b
)時,實數x的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2004•黃埔區(qū)一模)給出四個命題:①若直線a∥平面α,直線b⊥α,則a⊥b;②若直線a∥平面α,a⊥平面β,則α⊥β;③若a∥b,且b?平面α,則a∥α;④若平面α⊥平面β,平面γ⊥β,則α⊥γ.其中不正確的命題個數是( 。

查看答案和解析>>

同步練習冊答案