設(shè)函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若當(dāng)時(shí)恒成立,求實(shí)數(shù)的取值范圍。
(1)的單調(diào)遞增區(qū)間為,的單調(diào)遞減區(qū)間為;
(2)
【解析】
試題分析:(1)將代入,求導(dǎo)即可 (2)注意恒大于等于0,故只需對(duì)任意恒成立即可 接下來就利用導(dǎo)數(shù)研究函數(shù)
試題解析:(1)當(dāng)時(shí),
令,得或;令,得
的單調(diào)遞增區(qū)間為
的單調(diào)遞減區(qū)間為 6分
(2)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031004270420907184/SYS201403100427437871312722_DA.files/image019.png">對(duì)任意,設(shè)
當(dāng)時(shí),對(duì)恒成立, 符合題意 9分
當(dāng)時(shí),由得;由得;
所以在上是減函數(shù),在上是增函數(shù)
又,故不符合題意 12分
綜上所述的取值范圍是 13分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、不等關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)設(shè)函數(shù)(1)當(dāng)時(shí),求函數(shù)在上的最大值;(2)記函數(shù),若函數(shù)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若函數(shù)的定義域?yàn)镽,試求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年全國(guó)新課標(biāo)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本小題滿分10分)選修4-5不等選講
設(shè)函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)如果不等式的解集為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆河南鄭州智林學(xué)校高一下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若函數(shù)是(-,+)上的減函數(shù),求實(shí)數(shù)的七彩教育網(wǎng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年河北省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
(1)當(dāng)時(shí),求的最大值;
(2)令,(),其圖象上任意一點(diǎn)處切線的斜率≤恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com