精英家教網 > 高中數學 > 題目詳情
已知非零向量,滿足=0且32=2,則-的夾角為( )
A.
B.
C.
D.
【答案】分析:-的夾角為θ,則cosθ==,結合已知可求cosθ,由0<θ<π可求
解答:解:∵


-的夾角為θ,
則cosθ====
∵0<θ<π

故選A
點評:本題主要考查了向量的數量積的性質:向量的夾角公式、向量的模||=等公式的應用,向量夾角的范圍等知識的綜合應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知非零向量列{an}滿足:a1=(1,1),且an=(xn,yn)=
12
(xn-1-yn-1,xn-1+yn-1) (n>1,n∈N),令|an|=bn
(Ⅰ)證明:數列{bn}是等比數列,并求{bn}的通項公式;
(Ⅱ)對n∈N*,設cn=bnlog2bn,試問是否存在正整數m,使得cm<cm+1?若存在,請求出m的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•重慶模擬)已知非零向量列{
an
}
滿足:
a1
=(1,1)
an
=(xn,yn)=
1
2
(xn-1-yn-1xn-1+yn-1)(n≥2)

(Ⅰ)證明:{|
an
|}
是等比數列;
(Ⅱ)設bn=2-2lo
g
|
an
|
2
,pk=
b1b3b2k-1
b2b4b2k
(k∈N*)
,求證:p1+p2+…+pn
2bn+1
-1

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省分校高三10月學習質量診斷文科數學試卷(解析版) 題型:選擇題

已知非零向量、、滿足,向量的夾角為,且,則向量的夾角為 (    )

A.     B.    C.     D.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三上學期第三次月考理科數學卷 題型:填空題

已知非零向量、,滿足,且+2-2的夾角為1200,則等于 

 

查看答案和解析>>

科目:高中數學 來源:2010年普通高等學校招生全國統(tǒng)一考試(重慶卷)數學文史類模擬試卷(一) 題型:選擇題

已知非零向量、滿足,設向量的夾角為,則

A. 150°           B. 120°           C. 60°            D. 30°

 

查看答案和解析>>

同步練習冊答案