6.已知函數(shù)f(x)=4x+ax2-$\frac{2}{3}$x3(x∈R)
(1)當(dāng)a=1時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為a≤x-$\frac{2}{x}$在[1,+∞)恒成立令g(x)=x-$\frac{2}{x}$,x∈[1,+∞),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:(1)a=1時(shí),f(x)=4x+x2-$\frac{2}{3}$x3
f′(x)=4+2x-2x2,
令f′(x)>0,解得:-1<x<2,
令f′(x)<0,解得:x>2或x<-1,
故f(x)在(-∞,-1)遞減,在(-1,2)遞增,在(2,+∞)遞減;
(2)f′(x)=4+2ax-2x2,
若f(x)在[1,+∞)遞減,
則2ax≤2x2-4即a≤x-$\frac{2}{x}$在[1,+∞)恒成立,
令g(x)=x-$\frac{2}{x}$,x∈[1,+∞),
則g′(x)=1+$\frac{2}{{x}^{2}}$>0,
則g(x)在[1,+∞)遞增,
g(x)≥g(1)=-1,
故a≤-1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.《九章算術(shù)》中記載了公元前344年商鞅督造的一種標(biāo)準(zhǔn)量器--商鞅同方升,其主體部分的三視圖如圖所示,則該量器的容積為(  )
A.252B.189C.126D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,C2的極坐標(biāo)方程ρ2-2ρcosθ-3=0.
(Ⅰ)將C2的方程化為普通方程,并說(shuō)明C2是哪種曲線(xiàn).
(Ⅱ)C1與C2有兩個(gè)公共點(diǎn)A,B,定點(diǎn)P的極坐標(biāo)($\sqrt{2}$,$\frac{π}{4}$),求線(xiàn)段AB的長(zhǎng)及定點(diǎn)P到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)i是虛數(shù)單位,若(x-i)i=y+2i,x,y∈R,則實(shí)數(shù)x+y=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,且$\frac{S_n}{T_n}=\frac{7n+2}{n+3}$,則 $\frac{a_4}{b_4}$=( 。
A.$\frac{51}{10}$B.$\frac{30}{7}$C.$\frac{65}{12}$D.$\frac{23}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知扇形OAB的周長(zhǎng)是60cm,
(Ⅰ)若其面積是20cm2,求扇形OAB的圓心角的弧度數(shù);
(Ⅱ)求扇形OAB的最大面積及此時(shí)弦長(zhǎng)AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在數(shù)列{an}中,若an2-a2n+1=p(n≥1,n∈N*,p為常數(shù)),則稱(chēng){an}為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的判斷:
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②{(-1)n}是等方差數(shù)列;
③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
其中真命題的序號(hào)為①②③(將所有真命題的序號(hào)填在橫線(xiàn)上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.函數(shù)$f(x)=\frac{3}{{{9^x}+3}}$
(1)求f(x)+f(1-x)的值.
(2)設(shè)$S=f(\frac{1}{2017})+f(\frac{2}{2017})+f(\frac{3}{2017})+…+f(\frac{2016}{2017})$,求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,邊AC長(zhǎng)為$\sqrt{5}$,|${\overrightarrow{CA}$+$\overrightarrow{CB}}$|=2$\sqrt{5}$,D是BC邊上的點(diǎn),且$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{AD}$•$\overrightarrow{BC}$=0,則cos∠BAC=( 。
A.$\frac{{\sqrt{5}}}{10}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{10}}}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案