已知橢圓C的左、右焦點分別為,橢圓的離心率為,且橢圓C經(jīng)過點
(1)求橢圓C的標準方程;
(2)若線段是橢圓過點的弦,且,求內(nèi)切圓面積最大時實數(shù)的值.

(1);(2),.

解析試題分析:本題主要考查直線、橢圓的標準方程及其性質(zhì),考查思維能力,運算能力.第一問,利用離心率和橢圓過定點求橢圓的標準方程;第二問,分兩種情況:當直線軸垂直時,比較直觀,可求得,而當直線不與軸垂直時,設出直線的方程,讓它與橢圓聯(lián)立,消去參數(shù),得到兩根之和、兩根之積,代入到中,通過配方法求面積的最大值,利用內(nèi)切圓半徑列出的面積,解出的范圍,得到,此時直線軸垂直,所以.
試題解析:(1),又
    4分
(2)顯然直線不與軸重合
當直線軸垂直時,||=3,,;      5分
當直線不與軸垂直時,設直線代入橢圓C的標準方程,
整理,得
                    7分


所以
由上,得
所以當直線軸垂直時最大,且最大面積為3        10分
內(nèi)切圓半徑,則
,此時直線軸垂直,內(nèi)切圓面積最大
所以,           12分
考點:1.橢圓的標準方程;2.直線的標準方程;3.韋達定理;4.三角形面積公式;5.配方法求最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓上的點到左右兩焦點的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過右焦點的直線交橢圓于兩點,若軸上一點滿足,求直線的斜率的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓兩焦點坐標分別為,,且經(jīng)過點
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知點,直線與橢圓交于兩點.若△是以為直角頂點的等腰直角三角形,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設F(-c,0)是橢圓的左焦點,直線l:x=-與x軸交于P點,MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|。

(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點P的直線m與橢圓相交于不同的兩點A,B。
①證明:∠AFM=∠BFN;
②求△ABF面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為,記直線CA、CB的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知的兩頂點坐標,,圓的內(nèi)切圓,在邊,上的切點分別為,(從圓外一點到圓的兩條切線段長相等),動點的軌跡為曲線.

(1)求曲線的方程;
(2)設直線與曲線的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在拋物線 y2=4x上恒有兩點關于直線l:y=kx+3對稱,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線y=kx+b與橢圓交于A、B兩點,記△AOB的面積為S.

(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

同步練習冊答案