2.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(Ⅰ)  求證:BC⊥平面ACD;
(Ⅱ)求幾何體A-BCD的體積.

分析 (Ⅰ)由題中數(shù)量關(guān)系和勾股定理,得出AC⊥BC,再證BC垂直與平面ACD中的一條直線即可,△ADC是等腰Rt△,底邊上的中線OD垂直底邊,由面面垂直的性質(zhì)得OD⊥平面ABC,即OD⊥BC,從而證得BC⊥平面ACD;
(Ⅱ)由高和底面積,求得三棱錐B-ACD的體積即是幾何體A-BCD的體積.

解答 (Ⅰ)證明:∵在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.
∴AC=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,BC=$\sqrt{{2}^{2}+(4-2)^{2}}$=2$\sqrt{2}$,
∴AC2+BC2=16=AB2;
∴AC⊥BC,
取AC的中點O,連結(jié)DO,則DO⊥AC,
又面ADC⊥面ABC,面ADC∩面ABC=AC,DO?面ACD,
從而OD⊥平面ABC,
∵BC?面ABC,
∴OD⊥BC,
又AC⊥BC,AC∩OD=O,
∴BC⊥平面ACD;
(Ⅱ)解:由(Ⅰ)可知BC為三棱錐B-ACD的高,
BC=2$\sqrt{2}$,S△ACD=2,
∴VA-BCD=VB-ACD=$\frac{1}{3}$sh=$\frac{1}{3}$×2×2$\sqrt{2}$=$\frac{4\sqrt{2}}{3}$.

點評 本題考查了線面垂直的判定定理及勾股定理,注意等體積法的合理運用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.a(chǎn),b是兩條異面直線,a?平面α,b?平面β,若α∩β=c,則直線c必定( 。
A.與a,b均相交B.與a,b都不相交
C.至少與a,b中的一條相交D.至多與a,b中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在邊長為1的菱形ABCD中,∠BAD=30°,E是BC的中點,則$\overrightarrow{AC}$•$\overrightarrow{AE}$ ( 。
A.$\frac{6+3\sqrt{3}}{4}$B.$\frac{3+\sqrt{3}}{3}$C.$\frac{5}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z=$\frac{3}{1+i}$,則|z|為(  )
A.$\frac{3}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)m∈R,過定點A的動直線x+my=0和過定點B的動直線mx-y-m+3=0交于點P(x,y),則|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某校高一年級課題研究,其中對超市盈利研究的有200人,對有關(guān)測量研究的有150人,對學(xué)習(xí)方法研究的有300人,研究其他課程的有50人,利用分層抽樣的方法從研究這四個課題的學(xué)生中選取14人參加全校的研究性學(xué)習(xí)培訓(xùn),則應(yīng)該從對學(xué)習(xí)方法研究的學(xué)生中選取的人數(shù)為:6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在同一平面直角坐標(biāo)系中,將直線x+y+2=0變成直線8x+y+8=0,寫出滿足條件的伸縮變換公式$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=4y}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,若$a=\sqrt{3}$,b=1,A=2B,則邊長c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|mx-2|-|mx+1|(m∈R).
(1)當(dāng)m=1時,解不等式f(x)≤1;
(2)若對任意實數(shù)m,f(x)的最大值恒為n,求證:對任意正數(shù)a,b,c,當(dāng)a+b+c=n時,$\sqrt{a}$+$\sqrt$+$\sqrt{c}$≤n.

查看答案和解析>>

同步練習(xí)冊答案