【題目】已知橢圓G:=1(a>b>0)的離心率為,經(jīng)過左焦點F1(-1,0)的直線l與橢圓G相交于A,B兩點,y軸相交于點C,且點C在線段AB.

(1)求橢圓G的方程;

(2)|AF1|=|CB|,求直線l的方程.

【答案】(1);(2)

【解析】

設(shè)橢圓焦距為2c運用離心率公式和的關(guān)系,即可得到橢圓方程

由題意可知直線斜率存在,可設(shè)直線,代入橢圓方程,運用韋達(dá)定理和向量共線的坐標(biāo)表示,解方程即可得到所求方程

(1)設(shè)橢圓焦距為2c,由已知可得,且c=1,

所以a=2,即有b2=a2-c2=3,

則橢圓G的方程為=1.

(2)由題意可知直線l斜率存在,可設(shè)直線l:y=k(x+1),由消y,

并化簡整理得(4k2+3)x2+8k2x+4k2-12=0.

由題意可知Δ>0,

設(shè)A(x1,y1),B(x2,y2),

則x1+x2=,x1x2=.

因為點C,F1都在線段AB上,且|AF1|=|CB|,

所以,即(-1-x1,-y1)=(x2,y2-yC),

所以-1-x1=x2,即x1+x2=-1,

所以x1+x2==-1,

解得k2=,即k=±.

所以直線l的方程為y=(x+1)或y=-(x+1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,公園內(nèi)有一塊邊長的等邊形狀的三角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,上,

設(shè),表示的函數(shù)關(guān)系式

如果是灌溉水管,為節(jié)約成本希望它最短,的位置應(yīng)該在哪里?如果是參觀線路,則希望它最長,的位置又在哪里?請給予證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面PDC,E為棱PD的中點.

(1)求證:PB∥平面EAC;
(2)求證:平面PAD⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險,在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向即沿直線CB前往B處救援,則等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{cn}的前n項和為Tn , 若數(shù)列{cn}滿足各項均為正項,并且以(cn , Tn)(n∈N*)為坐標(biāo)的點都在曲線 上運動,則稱數(shù)列{cn}為“拋物數(shù)列”.已知數(shù)列{bn}為“拋物數(shù)列”,則( )
A.{bn}一定為等比數(shù)列
B.{bn}一定為等差數(shù)列
C.{bn}只從第二項起為等比數(shù)列
D.{bn}只從第二項起為等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點,焦點在x軸上的橢圓C的離心率為,(0,)是橢圓與y軸的一個交點.

(1)求橢圓C的方程;

(2)直線x=2與橢圓交于P,Q兩點,P位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動點;

若直線AB的斜率為,求四邊形APBQ面積的取值范圍;

當(dāng)點A,B在橢圓上運動,且滿足∠APQ=∠BPQ,直線AB的斜率是否為定值?若是,求出此定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2008年至2014年農(nóng)村居民家庭純收入y單位:千元的數(shù)據(jù)如下表:

年份

2008

2009

2010

2011

2012

2013

2014

年份代號

1

2

3

4

5

6

7

人均純收入y

29

33

36

44

48

52

59

求y關(guān)于的線性回歸方程;

利用中的回歸方程,分析2008年至2014年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2016年農(nóng)村居民家庭人均純收入

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點的平面記為α,BB1與α的交點為Q.

(1)證明:Q為BB1的中點;
(2)若AA1=4,CD=2,梯形ABCD的面積為6,∠ADC=60°,求平面α與底面ABCD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱臺ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四邊形ABCD為平行四邊形,四邊形BCC1B1為等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.

(1)求證:BC1⊥平面ACC1
(2)求直線BC1與平面ADD1A1所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案