分析 (1)去絕對值,分x<-1,-1≤x≤1,x>1討論,再解一次不等式,求并集即可;
(2)求得二次函數(shù)的最小值,以及分段函數(shù)的最大值,由恒有公共點,可得m的不等式,解得m的范圍.
解答 解:(1)當m=5 時,f(x)=5-|x-1|-|x+1|
=$\left\{\begin{array}{l}{5+2x,x<-1}\\{3,-1≤x≤1}\\{5-2x,x>1}\end{array}\right.$,…3分
由f(x)>2得不等式的解集為{x|-$\frac{3}{2}$<x<$\frac{3}{2}$}.…5分
(2)由二次函數(shù)y=x2+2x+3=(x+1)2+2,
該函數(shù)在x=-1 取得最小值2,
因為f(x)=$\left\{\begin{array}{l}{m+2x,x<-1}\\{m-2,-1≤x≤1}\\{m-2x,x>1}\end{array}\right.$,在x=-1 處取得最大值m-2,…8分
所以要使二次函數(shù)y=x2+2x+3與函數(shù)y=f(x)的圖象恒有公共點,
只需m-2≥2,即m≥4.…10分
點評 本題考查分段函數(shù)的運用:解不等式,注意運用分類討論,考查恒成立思想的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 0 | C. | 4 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,7] | B. | [0,7] | C. | [-2,7] | D. | [-2,0] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,-2) | C. | [-6,+∞) | D. | [-6,-2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com