已知函數(shù)f(x)=2cos2x+
3
sin2x+a
(x∈R).
(1)若f(x)有最大值2,求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(1)f(x)=2cos2x+
3
sin2x+a=1+cos2x+
3
sin2x+a=2sin(2x+
π
6
)+1+a
,
當(dāng)2x+
π
6
=
π
2
+2kπ
(k∈Z)時(shí),f(x)有最大值,
x=
π
6
+kπ
(k∈Z)時(shí),f(x)有最大值為3+a,
∴3+a=2,解得a=-1.
(2)令-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
,解得kπ-
π
3
≤x≤kπ+
π
6
(k∈Z),
∴函數(shù)f(x)的單調(diào)遞增區(qū)間[kπ-
π
3
,kπ+
π
6
]
(k∈Z)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案