設(shè)f(x)=
1
1+2lgx
+
1
1+4lgx
+
1
1+8lgx
,則f(x)+f(
1
x
)
=( 。
A.1B.2C.3D.4
f(x)=
1
1+2lgx
+
1
1+4lgx
+
1
1+8lgx
,
f(x)+f(
1
x
)
=
1
1+2lgx
+
1
1+4lgx
+
1
1+8lgx
+
1
1+ 2-lgx
+
1
1+4-lgx
+
1
1+8-gx

=(
1
1+2lgx
+
1
1+2-lgx
)+(
1
1+4lgx
+
1
1+4-lgx
)+(
1
1+8lgx
+
1
1+8-lgx

=
2+2lgx+2-lgx
2+2lgx+2-lgx
+
2+4lgx+4-lgx
2+4lgx+4-lgx
+
2+8lgx+8-lgx
2+8lgx+8-lgx

=3
故選C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用水清洗一堆蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用1個(gè)單位量的水可洗掉蔬菜上殘留農(nóng)藥量的
1
2
,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用x單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)f(x).
(Ⅰ)試規(guī)定f(0)的值,并解釋其實(shí)際意義;
(Ⅱ)試根據(jù)假定寫出函數(shù)f(x)應(yīng)該滿足的條件和具有的性質(zhì);
(Ⅲ)設(shè)f(x)=
1
1+x2
.現(xiàn)有a(a>0)單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用水清洗一堆蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用1個(gè)單位量的水可清除蔬菜上殘留農(nóng)藥量的
1
2
,用水越多,洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用x單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)f(x)
(1)試規(guī)定f(0)的值,并解釋其實(shí)際意義;
(2)設(shè)f(x)=
1
1+x2
現(xiàn)有a(a>0)單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次.哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•上海模擬)設(shè)f(x)=
ax+11-ax
(a>0,a≠1)

(1)求f(x)的反函數(shù)f-1(x):
(2)討論f-1(x)在(1.+∞)上的單調(diào)性,并加以證明:
(3)令g(x)=1+logax,當(dāng)[m,n]?(1,+∞)(m<n)時(shí),f-1(x)在[m,n]上的值域是[g(n),g(m)],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
1
1+x2
,|x|>1
|x-1|-2,|x|≤1
,則f(f(
1
2
))
=( 。
A、
1
2
B、
4
13
C、-
9
5
D、
25
41

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海 題型:解答題

用水清洗一堆蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用1個(gè)單位量的水可洗掉蔬菜上殘留農(nóng)藥量的
1
2
,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用x單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)f(x).
(Ⅰ)試規(guī)定f(0)的值,并解釋其實(shí)際意義;
(Ⅱ)試根據(jù)假定寫出函數(shù)f(x)應(yīng)該滿足的條件和具有的性質(zhì);
(Ⅲ)設(shè)f(x)=
1
1+x2
.現(xiàn)有a(a>0)單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較。空f明理由.

查看答案和解析>>

同步練習(xí)冊答案