如圖所示,PQ過△OAB的重心G,,求證:=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點,其中點A的坐標(biāo)為(2
3
,0),BC
過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求點C的坐標(biāo)及橢圓E的方程;
(Ⅱ)若橢圓E上存在兩點P,Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量
PQ
AB
是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=8交x軸于A,B兩點,曲線C是以AB為長軸,直線l:x=-4為準(zhǔn)線的橢圓.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若M是直線l上的任意一點,以O(shè)M為直徑的圓K與圓O相交于P,Q兩點,求證:直線PQ必過定點E,并求出點E的坐標(biāo);
(Ⅲ)如圖所示,若直線PQ與橢圓C交于G,H兩點,且
EG
=3
HE
,試求此時弦PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知A、B、C是長軸長為4的橢圓上的三點,點A是長軸的一個端點,BC過橢圓中心O,且
AC
BC
=0
,|BC|=2|AC|.
(I)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(II)如果橢圓上有兩點P、Q,使∠PCQ的平分線垂直于AO,證明:存在實數(shù)λ,使
PQ
AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市清江附中高三(上)第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓O:x2+y2=8交x軸于A,B兩點,曲線C是以AB為長軸,直線l:x=-4為準(zhǔn)線的橢圓.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若M是直線l上的任意一點,以O(shè)M為直徑的圓K與圓O相交于P,Q兩點,求證:直線PQ必過定點E,并求出點E的坐標(biāo);
(Ⅲ)如圖所示,若直線PQ與橢圓C交于G,H兩點,且,試求此時弦PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷中學(xué)高三(上)第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓O:x2+y2=8交x軸于A,B兩點,曲線C是以AB為長軸,直線l:x=-4為準(zhǔn)線的橢圓.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若M是直線l上的任意一點,以O(shè)M為直徑的圓K與圓O相交于P,Q兩點,求證:直線PQ必過定點E,并求出點E的坐標(biāo);
(Ⅲ)如圖所示,若直線PQ與橢圓C交于G,H兩點,且,試求此時弦PQ的長.

查看答案和解析>>

同步練習(xí)冊答案