分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)遞增區(qū)間即可;
(2)求出h(x)的導(dǎo)數(shù),求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最小值,解關(guān)于a的不等式,求出a的范圍即可.
解答 解:(1)∵$f'(x)=a[{({lnx-1})+x•\frac{1}{x}}]=alnx$,令f'(x)>0,
當(dāng)a>0時(shí),解得x>1;當(dāng)a<0時(shí),解得0<x<1,
所以當(dāng)a>0時(shí),函數(shù)y=f(x)的單調(diào)遞增區(qū)間是(1,+∞);
當(dāng)a<0時(shí),函數(shù)y=f(x)的單調(diào)遞增區(qū)間是(0,1).
(2)∵h(yuǎn)(x)=g′(x)=$\frac{1}{2}$x2-alnx,由題意得h(x)min≥0,
因?yàn)閔′(x)=$\frac{{x}^{2}-a}{x}$=$\frac{(x+\sqrt{a})(x-\sqrt{a})}{x}$,
所以當(dāng)x∈(0,$\sqrt{a}$)時(shí),h′(x)<0,h(x)單調(diào)遞減;
當(dāng)$x∈(\sqrt{a},+∞)$時(shí),h′(x)>0,h(x)單調(diào)遞增;
∴h(x)min=h($\sqrt{a}$)=$\frac{1}{2}$a-aln$\sqrt{a}$,
由$\frac{1}{2}a-aln\sqrt{a}≥0$,得lna≤1,解得0<a≤e,
所以實(shí)數(shù)a的取值范圍是(0,e].
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4+4$\sqrt{2}$)π | B. | (6+4$\sqrt{2}$)π | C. | (8+4$\sqrt{2}$)π | D. | (12+4$\sqrt{2}$)π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 0 | 1 | 2 | 3 |
y | k | 3.35 | 5.65 | 8.2 |
A. | 1 | B. | 0.95 | C. | 0.9 | D. | 0.85 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com