已知f(x)是偶函數(shù),它在[0,+∞)上是增函數(shù),若f(lg
1
x
)>f(1)則x的取值范圍是( 。
A.(
1
10
,1]
B.(0,
1
10
)∪(1,+∞)
C.(
1
10
,10)
D.(0,
1
10
)∪(10,+∞)
在[0,+∞)上
∵f(x)是增函數(shù),
∴f(lg
1
x
)>f(1)可化為lg
1
x
>1
1
x
>10,解得0<x<
1
10

又∵f(x)是偶函數(shù),
∴在(-∞,0)上f(lg
1
x
)>f(1)的解為:-
1
10
<x<0
綜上,f(lg
1
x
)>f(1)則x的取值范圍是(0,
1
10
)∪(10,+∞)
故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是偶函數(shù),x∈R,若將f(x)的圖象向右平移一個單位又得到一個奇函數(shù),若f(2)=-1,則f(1)+f(2)+f(3)+…+f(2006)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),如果f(ax+1)≤f(x-2)在x∈[
1
2
,1]
上恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、[-2,1]
B、[-5,0]
C、[-5,1]
D、[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、已知f(x)是偶函數(shù),且在[a,b]上是減函數(shù),試判斷f(x)在[-b,-a]上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是偶函數(shù),當(dāng)x≥0時,f(x)=-x2+4x,求當(dāng)x<0時,f(x)=
-x2-4x
-x2-4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•合肥二模)已知f(x)是偶函數(shù),當(dāng).x∈[0,
π
2
]時,f(x)=xsinx,若a=f(cos1),b=f(cos2),c=f(cos3),則 a,b,c 的大小關(guān)系為( 。

查看答案和解析>>

同步練習(xí)冊答案