數(shù)列{an}是首項(xiàng)a1=4的等比數(shù)列,且S3,S2,S4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2|an|,Tn為數(shù)列的前n項(xiàng)和,求Tn
【答案】分析:( I)當(dāng)q=1時(shí),S3=12,S2=8,S4=16,不成等差數(shù)列,當(dāng)q≠1時(shí)利用等比數(shù)列的求出公式建立等式求出q,從而求出數(shù)列{an}通項(xiàng)公式;
( II)求出bn,代入=-,然后利用裂項(xiàng)求和法求出前n項(xiàng)和即可.
解答:解 ( I)當(dāng)q=1時(shí),S3=12,S2=8,S4=16,不成等差數(shù)列
當(dāng)q≠1時(shí),∵S3,S2,S4成等差數(shù)列
∴2S2=S3+S4
∴2=+
得q=-2,
∴an=4×(-2)n-1=(-2)n+1
( II)bn=n+1,
==-
++…+=-=
點(diǎn)評(píng):本題主要考查了等比數(shù)列的通項(xiàng)公式,以及裂項(xiàng)求和法的應(yīng)用,同時(shí)考查了分類討論的數(shù)學(xué)思想和計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是首項(xiàng)為a1公差為-2的等差數(shù)列,如果a1+a4+a7=50,那么a3+a6+a9=( 。
A、28B、-78C、-48D、38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是首項(xiàng)a1=4的等比數(shù)列,且4a1,a5,-2a3成等差數(shù)列,則其公比為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)镽,且f(x)是以2為周期的周期函數(shù),數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,則f(a1)+f(a2)+…+f(a2008)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•靜安區(qū)一模)已知a>0且a≠1,數(shù)列{an}是首項(xiàng)與公比均為a的等比數(shù)列,數(shù)列{bn}滿足bn=an•lgan(n∈N*).
(1)若a=2,求數(shù)列{bn}的前n項(xiàng)和Sn;
(2)若對(duì)于n∈N*,總有bn<bn+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州二模)設(shè)數(shù)列{an}是首項(xiàng)為1的等比數(shù)列,若{
1
2an+an+1
}
是等差數(shù)列,則(
1
2a1
+
1
a2
)+(
1
2a2
+
1
a3
)
+…+(
1
2a2012
+
1
a2013
)
的值等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案