設f(x)=ax3+3x2+2,若f′(-1)=4,則a的值等于( )
A.
B.
C.
D.
【答案】分析:先求出導函數(shù),再代值算出a.
解答:解:f′(x)=3ax2+6x,
∴f′(-1)=3a-6=4,∴a=
故選D.
點評:本題是對導數(shù)基本知識的考查,屬于容易題,在近幾年的高考中,對于導數(shù)的考查基本圍繞導數(shù)的計算和導數(shù)的幾何意義展開,是考生復習時的重點內(nèi)容.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=ax3+bx2+cx+d(a≠0)
(Ⅰ)f(x)的圖象關于原點對稱,當x=
12
時,f(x)的極小值為-1,求f(x)的解析式.
(Ⅱ)若a=b=d=1,f(x)是R上的單調(diào)函數(shù),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=ax3+bx2+cx+d,f′(x)為其導數(shù),如圖是y=x•f′(x)圖象的一部分,則f(x)的極大值與極小值分別為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=ax3+bx2+4x,其導函數(shù)y=f′(x)的圖象經(jīng)過點(
23
,0)
,(2,0),
(1)求函數(shù)f(x)的解析式和極值;
(2)對x∈[0,3]都有f(x)≥mx2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=ax3+bx2+cx的極小值為-8,其導函數(shù)y=f′(x)的圖象開口向下且經(jīng)過點(-2,0),(
23
,0)

(I)求f(x)的解析式;
(II)方程f(x)+p=0有唯一實數(shù)解,求實數(shù)P的取值范圍.
(II)若對x∈[-3,3]都有f(x)≥m2-14m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=ax3+bx+c(a≠0)是奇函數(shù),其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導函數(shù)f′(x)的最小值為-12,
(1)求a,b,c的值;        
(2)求函數(shù)f(x)在[-1,3]上的最值.

查看答案和解析>>

同步練習冊答案