3.計(jì)算:求$\underset{lim}{x→0}$$\frac{({∫}_{0}^{x}{e}^{{t}^{2}}dt)^{2}}{{∫}_{0}^{x}t{e}^{2{t}^{2}}dt}$.

分析 利用等價(jià)無(wú)窮小及洛必達(dá)法則求得極限即可.

解答 解:原式=$\underset{lim}{x→0}$$\frac{{{2∫}_{0}^{x}e}^{{t}^{2}}dt{•e}^{{x}^{2}}}{x{•e}^{{2x}^{2}}}$=2$\underset{lim}{x→0}$$\frac{{{∫}_{0}^{x}e}^{{t}^{2}}dt}{x}$=2$\underset{lim}{x→0}$${e}^{{x}^{2}}$=2.

點(diǎn)評(píng) 本題考查求函數(shù)的極限,考查利用等價(jià)無(wú)窮小及洛必達(dá)法則求得極限,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若一個(gè)長(zhǎng)方體水槽的長(zhǎng)、寬、高分別為3$\sqrt{3}$、1、2$\sqrt{2}$,則它的外接球的表面積為36π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)$f(x)=cos(3x+\frac{5π}{2})$,滿足$\frac{f({x}_{i})}{{x}_{i}}=m$,其中${x}_{i}∈[-2π,2π],i=1,2,…,n,n∈{N}^{*}$,則n的最大值為( 。
A.13B.12C.10D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖所示,已知OA⊥?ABCD所在的平面,P、Q分別是AB,OC的中點(diǎn),求證:PQ∥平面OAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)X-B(10,0.8),則D(2X+1)等于( 。
A.1.6B.3.2C.6.4D.12.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.命題:若x+y≠5則x≠2或y≠3( 。
A.真命題B.假命題C.無(wú)法判斷真假D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知集合A={ (x,y)|x,y為實(shí)數(shù),且x2+y2=l},B={(x,y)|x,y為實(shí)數(shù),且y=x},則A∩B的元素個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$\sqrt{x}$,$\frac{\sqrt{f(x)}}{2}$,$\sqrt{3}$(x≥0)成等差數(shù)列.又?jǐn)?shù)列{an}(an>0)中,a1=3,此數(shù)列的前n項(xiàng)的和Sn(n∈N*)對(duì)所有大于1的正整數(shù)n都有Sn=f(Sn-1).
(1)求數(shù)列{an}的第n+1項(xiàng);
(2)若$\sqrt{_{n}}$是$\frac{1}{{a}_{n+1}}$,$\frac{1}{{a}_{n}}$的等比中項(xiàng),且Tn為{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知點(diǎn)O是銳角△ABC的外心,a,b,c分別為內(nèi)角A、B、C的對(duì)邊,A=$\frac{π}{4}$,且$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=λ$\overrightarrow{OA}$,則λ的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案