直線l過點(-1,2)且與直線2x-3y+9=0垂直,則l的方程是( )
A.3x+2y-1=0
B.3x+2y+7=0
C.2x-3y+5=0
D.2x-3y+8=0
【答案】分析:因為直線l與已知直線垂直,根據(jù)兩直線垂直時斜率的乘積為-1,由已知直線的斜率求出直線l的斜率,然后根據(jù)(-1,2)和求出的斜率寫出直線l的方程即可.
解答:解:因為直線2x-3y+9=0的斜率為,所以直線l的斜率為-,
則直線l的方程為:y-2=-(x+1),化簡得3x+2y-1=0
故選A
點評:此題考查學(xué)生掌握兩直線垂直時斜率的關(guān)系,會根據(jù)一點和斜率寫出直線的點斜式方程,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(-1,2)且與直線2x-3y+9=0垂直,則l的方程是( 。
A、3x+2y-1=0B、3x+2y+7=0C、2x-3y+5=0D、2x-3y+8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(-1,2)且與直線y=
2
3
x
垂直,則直線l的方程是( 。
A、3x+2y-1=0
B、3x+2y+7=0
C、2x-3y+5=0
D、2x-3y+8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(1,2)和第一、二、四象限,若直線l的橫截距與縱截距之和為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(-1,2)且與直線2x-3y+8=0垂直,則l的方程是
3x+2y-1=0
3x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(1,2),且在x軸截距是在y軸截距的2倍,則直線l的方程為( 。
A、x+2y-5=0B、x+2y+5=0C、2x-y=0或x+2y-5=0D、2x-y=0或x-2y+3=0

查看答案和解析>>

同步練習(xí)冊答案