已知關(guān)于x的方程(m是與x無關(guān)的實數(shù))的兩個實根在區(qū)間[0,2]內(nèi),求m的取值范圍.
【答案】分析:把方程的左邊設(shè)為二次函數(shù),題目中條件結(jié)合函數(shù)圖象得不等式組,△≥0,對稱軸在區(qū)間[0,2]內(nèi),f(0)≥0,f(2)≥0,求交集得m的取值范圍.
解答:解:設(shè)f(x)=x2+(-2m)+m2-1,對稱軸為x=m-,
△=-4(m2-1)=-2m,
f(0)=m2-1,f(2)=m2-4m+4=(m-2)2
由題意得:,
解得<m≤且m≥1,
∴m的取值范圍是
點評:本題考查了一元二次方程根的分布與系數(shù)的關(guān)系,注意把方程解的個數(shù)問題轉(zhuǎn)化為對應(yīng)函數(shù)圖象的交點個數(shù)問題,可使問題直觀易懂.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程(m+1)x2+2(2m+1)x+1-3m=0兩個根為x1、x2,若x1<1<x2<3,則m滿足( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程9x+m•3x+6=0(其中m∈R).
(1)若m=-5,求方程的解;
(2)若方程沒有實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2+(m+2)x+3=0的兩根均大于1,則實數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆遼寧沈陽四校協(xié)作體高二上學(xué)期期中考試理數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)

已知關(guān)于x的方程x2+(m-3)x+m=0

(1)若此方程有實數(shù)根,求實數(shù)m的取值范圍.

(2)若此方程的兩實數(shù)根之差的絕對值小于,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知關(guān)于x的方程(m+1)x2+2(2m+1)x+1-3m=0兩個根為x1、x2,若x1<1<x2<3,則m滿足


  1. A.
    (-2,-1)
  2. B.
    (1,3)
  3. C.
    (0,2)
  4. D.
    (-1,2)

查看答案和解析>>

同步練習(xí)冊答案