已知A,B,C是橢圓m:+=1(a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2,0),BC過(guò)橢圓m的中心,且,且||=2||.
(1)求橢圓m的方程;
(2)過(guò)點(diǎn)M(0,t)的直線l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且||=||.求實(shí)數(shù)t的取值范圍.
【答案】分析:(1)如圖,點(diǎn)A是橢圓m的右頂點(diǎn),∴a=2;由=0,得AC⊥BC;由=2和橢圓的對(duì)稱性,得=;這樣,可以得出點(diǎn)C的坐標(biāo),把C點(diǎn)的坐標(biāo)代入橢圓標(biāo)準(zhǔn)方程,可求得.
(2)如圖,過(guò)點(diǎn)M的直線l,與橢圓m交于兩點(diǎn)P,Q;當(dāng)斜率k=0時(shí),點(diǎn)M在橢圓內(nèi),則-2<t<2;當(dāng)k≠0時(shí),設(shè)過(guò)M點(diǎn)的直線l:y=kx+t與橢圓方程組成方程組,消去y,可得關(guān)于x的一元二次方程,由判別式△>0,得不等式①,由x1+x2的值可得PQ的中點(diǎn)H坐標(biāo),由=,得DH⊥PQ,所以斜率,這樣得等式②;
由①②可得t的范圍.
解答:解(1)如圖所示,
=2,且BC過(guò)點(diǎn)O(0,0),則
又 =0,∴∠OCA=90°,且A(2,0),則點(diǎn)C,
由a=,可設(shè)橢圓的方程m:;
將C點(diǎn)坐標(biāo)代入方程m,得,解得c2=8,b2=4;
∴橢圓m的方程為:;
(2)如圖所示,
由題意,知D(0,-2),∵M(jìn)(0,t),
∴1°當(dāng)k=0時(shí),顯然-2<t<2,
   2°當(dāng)k≠0時(shí),設(shè)l:y=kx+t,則
,消去y,得(1+3k2)x2+6ktx+3t2-12=0;
由△>0,可得t2<4+12k2
設(shè)點(diǎn)P(x1,y1),Q(x2,y2),且PQ的中點(diǎn)為H(x,y);
則x==-,y=kx+t=,∴H
,∴DH⊥PQ,則kDH=-,∴=-;
∴t=1+3k2
∴t>1,將①代入②,得1<t<4,∴t的范圍是(1,4);
綜上,得t∈(-2,4).
點(diǎn)評(píng):本題考查了直線與橢圓知識(shí)的綜合應(yīng)用,以及向量在解析幾何中的應(yīng)用;用數(shù)形結(jié)合的方法比較容易理清思路,解得結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0)
,BC過(guò)橢圓M的中心,且
AC
BC
=0,|
BC
|=2|
AC
|

(1)求橢圓M的方程;
(2)過(guò)點(diǎn)(0,t)的直線l(斜率存在時(shí))與橢圓M交于兩點(diǎn)P、Q,設(shè)D為橢圓M與y軸負(fù)半軸的交點(diǎn),且|
DP
|=|
DQ
|
,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0),BC
過(guò)橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求點(diǎn)C的坐標(biāo)及橢圓E的方程;
(Ⅱ)若橢圓E上存在兩點(diǎn)P,Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量
PQ
AB
是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C是橢圓m:
x2
a2
+
y2
b2
=1(a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0),BC過(guò)橢圓m的中心,且
AC
BC
=0
,且|
BC
|=2|
AC
|.
(1)求橢圓m的方程;
(2)過(guò)點(diǎn)M(0,t)的直線l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且|
DP
|=|
DQ
|.求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A、B、C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上的三點(diǎn),,BC過(guò)橢圓的中心O,且AC⊥BC,|BC|=2|AC|.則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•北京)已知A,B,C是橢圓W:
x24
+y2=1
上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(Ⅰ)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(Ⅱ)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案