為拋物線的焦點,為該拋物線上三點,若,則(   )
A.B.C.D.
C

試題分析:由已知得,設,因為,所以.由拋物線的焦半徑公式得:.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線
(1)若圓心在拋物線上的動圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經過的定點坐標;
(2)拋物線的焦點為,若過點的直線與拋物線相交于兩點,若,求直線的斜率;
(3)若過正半軸上點的直線與該拋物線交于兩點,為拋物線上異于的任意一點,記連線的斜率為試求滿足成等差數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A,B,M為拋物線弧AB上的動點.

(1)若|AB|=8,求拋物線的方程;
(2)求的最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線k>0)與拋物線相交于兩點,的焦點,若,則k的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線C的頂點在原點,經過點A(2,2),其焦點F在x軸上.

(1)求拋物線C的標準方程;
(2)求過點F,且與直線OA垂直的直線的方程;
(3)設過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關于m的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F是拋物線的焦點,A,B是該拋物線上的兩點,,則線段AB的中點到y軸的距離為 ( 。
A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).點M(x0,y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O).當x0=1-時,切線MA的斜率為-.

(1)求p的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以x軸為對稱軸,原點為頂點的拋物線上的一點P(1,m)到焦點的距離為3,則其方程是
A.y=4x2B.y=8x2      C.y2=4x          D.y2=8x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線的焦點坐標是(0,-3),則拋物線的標準方程是________.

查看答案和解析>>

同步練習冊答案