已知平行六面體ABCD-A1B1C1D1,化簡下列向量表達式,并填上化簡后的結果向量:
(1)=    ;
(2)=   
【答案】分析:畫出平行六面體ABCD-A1B1C1D1,根據(jù)向量的平行四邊形法則求出和向量,可解(1)(2).
解答:解:(1)
===
(2)
故答案為:(1),(2)
點評:本題考查空間向量的加減法,考查分析問題解決問題的能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時,EF⊥AD?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知平行六面體ABCD-A1B1C1D1
(I)若G為△ABC的重心,
A1M
=3
MG
,設
AB
=a,
AD
=b,
AA1
=c
,用向量a、b、c表示向量
A1M
;
(II)若平行六面體ABCD-A1B1C1D1各棱長相等且AB⊥平面BCC1B1,E為CD中點,AC1∩BD1=O,求證;OE⊥平面ABC1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時,EF⊥AD?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知平行六面體ABCD-A1B1C1D1
(I)若G為△ABC的重心,數(shù)學公式,設數(shù)學公式,用向量a、b、c表示向量數(shù)學公式
(II)若平行六面體ABCD-A1B1C1D1各棱長相等且AB⊥平面BCC1B1,E為CD中點,AC1∩BD1=O,求證;OE⊥平面ABC1D1

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省蕪湖一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時,EF⊥AD?

查看答案和解析>>

同步練習冊答案