【題目】如圖,過拋物線上一點(diǎn),作兩條直線分別交拋物線于,當(dāng)的斜率存在且傾斜角互補(bǔ)時(shí):

1的值;

2若直線軸上的截距時(shí),求面積的最大值

【答案】12

【解析】

試題分析:1由拋物線過點(diǎn),得傾斜角互補(bǔ)可知,即,由,代入得;2利用點(diǎn)差法求得,設(shè)直線的方程為,聯(lián)立直線的方程和拋物線的方程利用弦長公式和點(diǎn)到直線距離公式計(jì)算面積,利用導(dǎo)數(shù)求得面積的最大值為

試題解析:

1由拋物線過點(diǎn),得,

設(shè)直線的斜率為,直線的斜率為,

,傾斜角互補(bǔ)可知,即,

,代入得

2設(shè)直線的斜率為,由,得,

1,將其代入上式得

因此設(shè)直線的方程為,由,消去

,得,這時(shí),

,又點(diǎn)到直線的距離為,

所以

,則由,得,

當(dāng)時(shí),,所以單調(diào)遞增,當(dāng)時(shí),,所以單調(diào)遞減,

的最大值為,故面積的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有外形相同的球分裝三個(gè)盒子,每盒10個(gè).其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A、3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號(hào)盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號(hào)盒子中任取一個(gè)球;若第一次取得標(biāo)有字母B的球,則在第三號(hào)盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為(

A.0.59 B.0.54 C.0.8 D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)滿足fx+y=fx+fy),當(dāng)x0時(shí),有,且f1=﹣2

1)求f0)及f﹣1)的值;

2)判斷函數(shù)fx)的單調(diào)性,并利用定義加以證明;

3)求解不等式f2x﹣fx2+3x)<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),求函數(shù)的值域;

2已知,函數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖.

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤.

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一青蛙從點(diǎn)開始依次水平向右和豎直向上跳動(dòng),其落點(diǎn)坐標(biāo)依次是,如圖所示,坐標(biāo)以已知條件為準(zhǔn)表示青蛙從點(diǎn)到點(diǎn)所經(jīng)過的路程

1若點(diǎn)為拋物線準(zhǔn)線上一點(diǎn),點(diǎn)均在該拋物線上,并且直線經(jīng)過該拋物線的焦點(diǎn),證明

2若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫出不需證明;

3若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AEEBBC=2,

BF⊥平面ACE,且點(diǎn)FCE上.

(1)求證:AEBE;

(2)求三棱錐DAEC的體積;

(3)設(shè)點(diǎn)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,

使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點(diǎn)的直線交拋物線于, 兩點(diǎn), 為坐標(biāo)原點(diǎn),若,則的面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角的對(duì)邊分別為,已知

(1)

(2),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案