已知函數(shù).
(1)若函數(shù)的圖象在處的切線斜率為,求實(shí)數(shù)的值;
(2)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍.
(1);(2)函數(shù)的單調(diào)遞減區(qū)間是;單調(diào)遞增區(qū)間是;(3).
解析試題分析:(Ⅰ)先求導(dǎo)數(shù),再由函數(shù)的圖象在x=2處的切線的斜率為1,令求解;(2)求出,然后列表求出的單調(diào)區(qū)間;(3)求出,由函數(shù)為上的單調(diào)減函數(shù),得出在上恒成立,構(gòu)造,判斷在上為減函數(shù),從而求解。
試題解析:(1) 1分
由已知,解得. 3分
(2)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/18/8/49ioe.png" style="vertical-align:middle;" />..
當(dāng)變化時(shí),的變化情況如下:
由上表可知,函數(shù)的單調(diào)遞減區(qū)間是;單調(diào)遞增區(qū)間是. 6分- + 極小值
(3)由得, 8分
由已知函數(shù)為上的單調(diào)減函數(shù),
則在上恒成立,即在上恒成立.
即在
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln-a+x(a>0).
(Ⅰ)若=,求f(x)圖像在x=1處的切線的方程;
(Ⅱ)若的極大值和極小值分別為m,n,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在內(nèi)恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ)求證:(,e是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù) ().
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)試通過研究函數(shù)()的單調(diào)性證明:當(dāng)時(shí),;
(Ⅲ)證明:當(dāng),且均為正實(shí)數(shù), 時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-alnx,a∈R.
(Ⅰ)當(dāng)f(x)存在最小值時(shí),求其最小值φ(a)的解析式;
(Ⅱ)對(duì)(Ⅰ)中的φ(a),
(。┊(dāng)a∈(0,+∞)時(shí),證明:φ(a)≤1;
(ⅱ)當(dāng)a>0,b>0時(shí),證明:φ′()≤≤φ′().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,且函數(shù)在點(diǎn)處的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)點(diǎn),當(dāng)時(shí),直線的斜率恒小于,試求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中是常數(shù)且.
(1)當(dāng)時(shí),在區(qū)間上單調(diào)遞增,求的取值范圍;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)設(shè)是正整數(shù),證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com