現(xiàn)有長(zhǎng)分別為1m、2m、3m的鋼管各3根(每根鋼管質(zhì)地均勻、粗細(xì)相同且附有不同的編號(hào)),從中隨機(jī)抽取n根(假設(shè)各鋼管被抽取的可能性是均等的,1≤n≤9),再將抽取的鋼管相接焊成筆直的一根.
(Ⅰ)當(dāng)n=3時(shí),記事件A={抽取的3根鋼管中恰有2根長(zhǎng)度相等},求P(A);
(Ⅱ)當(dāng)n=2時(shí),若用ξ表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),
①求ξ的分布列;
②令η=-λ2ξ+λ+1,E(η)>1,求實(shí)數(shù)λ的取值范圍.
查看本題解析需要登錄
查看解析如何獲取優(yōu)點(diǎn)?普通用戶:2個(gè)優(yōu)點(diǎn)。
如何申請(qǐng)VIP用戶?VIP用戶:請(qǐng)直接登錄即可查看。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)現(xiàn)有長(zhǎng)分別為1m、2m、3m的鋼管各3根(每根鋼管質(zhì)地均勻、粗細(xì)相同且附有不同的編號(hào)),從中隨機(jī)抽取n根(假設(shè)各鋼管被抽取的可能性是均等的,1≤n≤9),再將抽取的鋼管相接焊成筆直的一根.
(Ⅰ)當(dāng)n=3時(shí),記事件A={抽取的3根鋼管中恰有2根長(zhǎng)度相等},求P(A);
(Ⅱ)當(dāng)n=2時(shí),若用ξ表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),
①求ξ的分布列;
②令η=-λ2ξ+λ+1,E(η)>1,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)有長(zhǎng)分別為1m、2m、3m的鋼管各3根(每根鋼管質(zhì)地均勻、粗細(xì)相同且附有不同的編號(hào)),從中隨機(jī)抽取n根(假設(shè)各鋼管被抽取的可能性是均等的,1≤n≤9),再將抽取的鋼管相接焊成筆直的一根.
(Ⅰ)當(dāng)n=3時(shí),記事件A={抽取的3根鋼管中恰有2根長(zhǎng)度相等},求P(A);
(Ⅱ)當(dāng)n=2時(shí),若用ξ表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),
①求ξ的分布列;
②令η=-λ2ξ+λ+1,E(η)>1,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省青島市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

現(xiàn)有長(zhǎng)分別為1m、2m、3m的鋼管各3根(每根鋼管質(zhì)地均勻、粗細(xì)相同且附有不同的編號(hào)),從中隨機(jī)抽取n根(假設(shè)各鋼管被抽取的可能性是均等的,1≤n≤9),再將抽取的鋼管相接焊成筆直的一根.
(Ⅰ)當(dāng)n=3時(shí),記事件A={抽取的3根鋼管中恰有2根長(zhǎng)度相等},求P(A);
(Ⅱ)當(dāng)n=2時(shí),若用ξ表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),
①求ξ的分布列;
②令η=-λ2ξ+λ+1,E(η)>1,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案