10.如圖所示是y=f(x)的導(dǎo)數(shù)圖象,則正確的判斷是(  )
①f(x)在(-3,1)上是增函數(shù);
②x=-1是f(x)的極小值點(diǎn);
③x=2是f(x)的極小值點(diǎn);
④f(x)在(2,4)上是減函數(shù),在(-1,2)上是增函數(shù).
A.①②④B.②④C.③④D.①③④

分析 根據(jù)圖象求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值點(diǎn),進(jìn)而得到答案.

解答 解:由圖象得:f(x)在(-∞,-1)遞減,在(-1,2)遞增,在(2,4)遞減,(4,+∞)遞增,
∴x=4是f(x)的極小值點(diǎn),x=2是f(x)的極大值點(diǎn),
故②④正確,
故選:B.

點(diǎn)評(píng) 本題考察了函數(shù)的單調(diào)性,函數(shù)的極值問(wèn)題,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知定義在R上的可導(dǎo)函數(shù)f(x)圖象既關(guān)于直線x=1對(duì)稱,又關(guān)于直線x=5對(duì)稱,且當(dāng)x∈[1,5]時(shí),有f′(x)>3f(x),則下列各式成立的是(  )
A.e3f(-14)<f(-5),e3f(-10)<f(-19)B.e3f(-14)>f(-5),e3f(-10)>f(-19)
C.e3f(-14)<f(-5),e3f(-10)>f(-19)D.e3f(-14)>f(-4),e3f(-10)<f(-19)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=(1-x)e-x.若f(x)在(m,m+2)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是( 。
A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若不等式|x+2|-|x-1|≥a3-4a2-3對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,4]B.(-∞,2]C.[4,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某同學(xué)在獨(dú)立完成課本上的例題:“求證:$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$”后,又進(jìn)行了探究,發(fā)現(xiàn)下面的不等式均成立.$\sqrt{0}+\sqrt{10}<2\sqrt{5}$
$\sqrt{1.3}+\sqrt{8.7}<2\sqrt{5}$
$\sqrt{2}+\sqrt{8}<2\sqrt{5}$
$\sqrt{4.6}+\sqrt{5.4}<2\sqrt{5}$
$\sqrt{5}+\sqrt{5}≤2\sqrt{5}$
經(jīng)過(guò)認(rèn)真地分析、嘗試,該同學(xué)歸納出一個(gè)一般性的不等式:$\sqrt{x}$+$\sqrt{y}$≤2$\sqrt{\frac{x+y}{2}}$(x,y∈[0,+∞)).請(qǐng)用合適的方法證明該不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{2}$ax2+lnx,其中a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a<-1,f(x)在(0,1]上的最大值為-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(1)當(dāng)e≤x≤e2時(shí),求函數(shù)f(x)的最小值;
(2)已知函數(shù)g(x)=2x-$\frac{ax(x-1)}{lnx}$,且f(x)g(x)≤0恒成立,求實(shí)數(shù)a的值;
(3)某同學(xué)發(fā)現(xiàn):存在正實(shí)數(shù)m、n(m<n),使mn=nm,試問(wèn):他的發(fā)現(xiàn)是否正確?若不正確,則請(qǐng)說(shuō)明理由;若正確,則請(qǐng)直接寫出m的取值范圍,而不需要解答過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,已知△ABC周長(zhǎng)為2,連接△ABC三邊的中點(diǎn)構(gòu)成第二個(gè)三角形,再連接第二個(gè)對(duì)角線三邊中點(diǎn)構(gòu)成第三個(gè)三角形,依此類推,第2003個(gè)三角形周長(zhǎng)為( 。
A.$\frac{1}{2002}$B.$\frac{1}{2001}$C.$\frac{1}{{2}^{2002}}$D.2${\;}^{\frac{1}{2001}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.方程1-2sin2x+2cosx-m=0有解,則實(shí)數(shù)m的范圍是[-$\frac{3}{2}$,3].

查看答案和解析>>

同步練習(xí)冊(cè)答案