1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
2 |
3 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
2 |
3 |
4 |
9 |
2 |
3 |
bn+1 |
bn |
2 |
3 |
2 |
3 |
2 |
3 |
3 |
5 |
2 |
3 |
3 |
5 |
2 |
3 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
an+1 |
an |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
2 |
3 |
12n+8 |
3 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
2 |
3 |
4 |
9 |
4 |
9 |
4 |
9 |
2 |
3 |
2 |
3 |
2 |
3 |
bn+1 |
bn |
2 |
3 |
2 |
3 |
2 |
3 |
3 |
5 |
2 |
3 |
3 |
5 |
2 |
3 |
a | ||
1-(-
|
3 |
5 |
b | ||
1-(-
|
2 |
3 |
5 |
3 |
5 |
9 |
5 |
3 |
5 |
9 |
9 |
5 |
3 |
5 |
3 |
5 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
lim |
n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
A已知數(shù)列{an}是首項(xiàng)為,公比q=的等比數(shù)列,設(shè),數(shù)列{cn}滿足cn=an•bn.
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
B已知數(shù)列{an}和{bn}滿足:a1=λ,,,其中λ為實(shí)數(shù),n為正整數(shù).
(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(Ⅱ)證明:當(dāng)λ≠-18時(shí),數(shù)列{bn}是等比數(shù)列;
(Ⅲ)設(shè)0<a<b(a,b為實(shí)常數(shù)),Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省六安市舒城中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com