已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn+Sm=Sn+m(m,n∈N*)且a1=6,那么a10=


  1. A.
    10
  2. B.
    60
  3. C.
    6
  4. D.
    54
C
分析:取m=1代入已知等式,結(jié)合a1=S1=6得Sn+1=Sn+6,所以{Sn}構(gòu)成等差數(shù)列.然后根據(jù)等差數(shù)列通項(xiàng)公式求出Sn=6n,即可算出a10的值.
解答:取m=1,可得Sn+S1=Sn+1,結(jié)合a1=6=S1,得Sn+1=Sn+6,
∴{Sn}構(gòu)成以S1=6為首項(xiàng),公差d=6的等差數(shù)列
可得Sn=6+(n-1)×6=6n
因此,a10=S10-S9=60-54=6
故選:C
點(diǎn)評(píng):本題給出數(shù)列的前n項(xiàng)和滿足Sn+Sm=Sn+m,求第10項(xiàng)的值,著重考查了數(shù)列遞推關(guān)系的認(rèn)識(shí)和等差數(shù)列的通項(xiàng)公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案