設(shè)函數(shù).
(I)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求的值;
(II)當(dāng)時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點(diǎn),求的取值范圍;
(III)當(dāng)時,求函數(shù)在區(qū)間上的最大值
(I).(II) 。(Ⅲ)

試題分析:(I).
因?yàn)榍與曲線在它們的交點(diǎn)處具有公共切線,所以,且,即,且,
解得.
(II)記,當(dāng)時,,
,令,得.
當(dāng)變化時,的變化情況如下表:








0

0



極大值

極小值

所以函數(shù)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為,
①當(dāng)時,即時,在區(qū)間上單調(diào)遞增,所以在區(qū)間上的最大值為;
②當(dāng),即時,在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以在區(qū)間上的最大值為;
當(dāng),即時,t+3<2且h(2)=h(-1),所以在區(qū)間上的最大值為;

點(diǎn)評:導(dǎo)數(shù)本身是個解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請注意歸納常規(guī)方法和常見注意點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上無零點(diǎn),求最小值;
(Ⅲ)若對任意給定的,在上總存在兩個不同的),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),的導(dǎo)函數(shù)為,且,,則下列不等式成立的是(注:e為自然對數(shù)的底數(shù))(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的單調(diào)遞減區(qū)間為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)在區(qū)間上的最大值與最小值分別為,則___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)軸切于點(diǎn),且極小值為,則( 。
A.12B.13C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù).
(1)若的兩個極值點(diǎn)為,且,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,若,則的值等于(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,函數(shù).
(1)求的極值;
(2)若上為單調(diào)遞增函數(shù),求的取值范圍;
(3)設(shè),若在是自然對數(shù)的底數(shù))上至少存在一個,使得成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案