如圖,已知⊥平面,∥,是正三角形,,且是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面BCE⊥平面.
(1)取CE中點(diǎn)P,連結(jié)FP、BP,∵F為CD的中點(diǎn),借助于中位線定理得到FP∥DE,再結(jié)合平行的傳遞性得到證明。
(2)對(duì)于面面垂直的證明,關(guān)鍵是要根據(jù)線面垂直的判定定理以及面面垂直的判定定理得到。
【解析】
試題分析:解:(Ⅰ)取CE中點(diǎn)P,連結(jié)FP、BP,
∵F為CD的中點(diǎn),
∴FP∥DE,且FP=
又AB∥DE,且AB= ∴AB∥FP,且AB=FP,
∴ABPF為平行四邊形,∴AF∥BP. 4分
又∵AF平面BCE,BP平面BCE,
∴AF∥平面BCE …………7分
(Ⅱ)∵△ACD為正三角形,∴AF⊥CD
∵AB⊥平面ACD,DE//AB
∴DE⊥平面ACD 又AF平面ACD
∴DE⊥AF
又AF⊥CD,CD∩DE=D
∴AF⊥平面CDE 12分
又BP∥AF
∴BP⊥平面CDE又∵BP平面BCE
∴平面BCE⊥平面CDE 14分
考點(diǎn):線面垂直和面面垂直
點(diǎn)評(píng):主要是考查了空間中線面和面面垂直的判定定理的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
AB |
BC |
DE |
EF |
h′ |
h |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com