已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)數(shù)學(xué)公式在函數(shù)y=x2+1的圖象上.?dāng)?shù)列{bn}滿(mǎn)足b1=0,bn+1=bn+3an(n∈N*).
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)若cn=anbncosnπ(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn

解:(Ⅰ)因?yàn)辄c(diǎn)( )(n∈N*)在函數(shù)y=x2+1的圖象上
所以an+1=an+1
根據(jù)等差數(shù)列的定義:{an}是首項(xiàng)為1,公差為1的等差數(shù)列
所以an=n
∵bn+1=bn+3an(n∈N*).
∴bn+1-bn=3n(n∈N*).

(II)∵cn=anbncosnπ(n∈N*),

當(dāng)n為偶數(shù)時(shí),Sn=(-3+2•32+…+n•3n)+3[1-2+3-4+…+(n-1)-n]
設(shè)Tn=(-3+2•32+…+n•3n),則3Tn=-32+2•33+…+n•3n+1


當(dāng)n為奇數(shù)時(shí),

分析:(Ⅰ)由題設(shè)條件知an+1=an+1,根據(jù)等差數(shù)列的定義:{an}是首項(xiàng)為1,公差為1的等差數(shù)列,從而an=n,根據(jù)bn+1=bn+3an(n∈N*),可得bn+1-bn=3n(n∈N*).累加可求和,從而得{bn}的通項(xiàng)公式;
(II)根據(jù)cn=anbncosnπ(n∈N*),可得,再分n為偶數(shù),奇數(shù)分別求和即可
點(diǎn)評(píng):本題以函數(shù)為載體,考查數(shù)列的概念和性質(zhì)及其應(yīng)用,,考查錯(cuò)位相減法求和,解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山二模)設(shè)a1≤a2≤…≤an,b1≤b2≤…≤bn為兩組實(shí)數(shù),c1,c2,…,cn是b1,b2,…,bn的任一排列,我們稱(chēng)S=a1c1+a2c2+a3c3+…+ancn為兩組實(shí)數(shù)的亂序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1為反序和,S2=a1b1+a2b2+a3b3+…+anbn 為順序和.根據(jù)排序原理有:S1≤S≤S2即:反序和≤亂序和≤順序和.給出下列命題:
①數(shù)組(2,4,6,8)和(1,3,5,7)的反序和為60;
②若A=
x
2
1
+
x
2
2
+…+
x
2
n
,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正數(shù),則A≤B;
③設(shè)正實(shí)數(shù)a1,a2,a3的任一排列為c1,c2,c3
a1
c1
+
a2
c2
+
a3
c3
的最小值為3;
④已知正實(shí)數(shù)x1,x2,…,xn滿(mǎn)足x1+x2+…+xn=P,P為定值,則F=
x
2
1
x2
+
x
2
2
x3
+…+
x
2
n-1
xn
+
x
2
n
x1
的最小值為
P
2

其中所有正確命題的序號(hào)為
①③
①③
.(把所有正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省眉山市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)a1≤a2≤…≤an,b1≤b2≤…≤bn為兩組實(shí)數(shù),c1,c2,…,cn是b1,b2,…,bn的任一排列,我們稱(chēng)S=a1c1+a2c2+a3c3+…+ancn為兩組實(shí)數(shù)的亂序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1為反序和,S2=a1b1+a2b2+a3b3+…+anbn 為順序和.根據(jù)排序原理有:S1≤S≤S2即:反序和≤亂序和≤順序和.給出下列命題:
①數(shù)組(2,4,6,8)和(1,3,5,7)的反序和為60;
②若A=++…+,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正數(shù),則A≤B;
③設(shè)正實(shí)數(shù)a1,a2,a3的任一排列為c1,c2,c3++的最小值為3;
④已知正實(shí)數(shù)x1,x2,…,xn滿(mǎn)足x1+x2+…+xn=P,P為定值,則F=++…++的最小值為
其中所有正確命題的序號(hào)為    .(把所有正確命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案