函數(shù)y=f(x)對一切實數(shù)x都滿足f(1+x)=f(1-x),且f(x)=0有3個實數(shù)根,則這3個實數(shù)根之和為( 。
A、6B、9C、4D、3
分析:由f(1+x)=f(1-x)⇒函數(shù)y=f(x)的圖象關于直線x=1對稱,又f(x)=0有3個實數(shù)根,從而知這3個實數(shù)根之和為3.
解答:解:∵f(1+x)=f(1-x),
∴函數(shù)y=f(x)的圖象關于直線x=1對稱,
又f(x)=0有3個實數(shù)根,從小到大設為x1,x2,x3,
則x1+x3=2,x2=1,
∴這3個實數(shù)根之和為3,
故選:D.
點評:本題考查抽象函數(shù)及其應用,著重考查函數(shù)的對稱性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+4)=f(x)+f(2)成立,當x1,x2∈[0,2]且x1≠x2時,都有
f(x2)-f(x1)x2-x1
>0
給出下列命題:
(1)f(2)=0且T=4是函數(shù)f(x)的一個周期;
(2)直線x=4是函數(shù)y=f(x)的一條對稱軸;
(3)函數(shù)y=f(x)在[-6,-4]上是增函數(shù);
(4)函數(shù)y=f(x)在[-6,6]上有四個零點.
其中正確命題的序號是
 
(填上你認為正確的所有序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①對于命題P:?x∈R,x2+x+1<0,則?P:?x∈R,x2+x+1<0.
②G2=ab是三個數(shù)a、G、b成等比數(shù)列的充要條件;
③若函數(shù)y=f(x)對任意的實數(shù)x滿足f(x+1)=-f(x),則f(x)是周期函數(shù);
④如果一組數(shù)據(jù)中,每個數(shù)都加上同一個非零常數(shù),則這組數(shù)據(jù)的平均數(shù)和方差都改變.
其中正確命題的序號為
.(把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+4)=f(x)+f(2)成立,當x1,x2∈[0,2]且x1≠x2時,都有
f(x2)-f(x1)
x2-x1
>0.給出下列命題:
①f(2)=0且T=4是函數(shù)f(x)的一個周期;
②直線x=4是函數(shù)y=f(x)的一條對稱軸;
③函數(shù)y=f(x)在[-6,-4]上是增函數(shù);
④函數(shù)y=f(x)在[-6,6]上有四個零點.
其中正確命題的序號為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省贛州市十一縣市高三(上)期中數(shù)學試卷(理科)(解析版) 題型:填空題

已知函數(shù)y=f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+4)=f(x)+f(2)成立,當x1,x2∈[0,2]且x1≠x2時,都有給出下列命題:
(1)f(2)=0且T=4是函數(shù)f(x)的一個周期;
(2)直線x=4是函數(shù)y=f(x)的一條對稱軸;
(3)函數(shù)y=f(x)在[-6,-4]上是增函數(shù);
(4)函數(shù)y=f(x)在[-6,6]上有四個零點.
其中正確命題的序號是     (填上你認為正確的所有序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河南省豫南九校高三第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)y=f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+4)=f(x)+f(2)成立,當x1,x2∈[0,2]且x1≠x2時,都有給出下列命題:
(1)f(2)=0且T=4是函數(shù)f(x)的一個周期;
(2)直線x=4是函數(shù)y=f(x)的一條對稱軸;
(3)函數(shù)y=f(x)在[-6,-4]上是增函數(shù);
(4)函數(shù)y=f(x)在[-6,6]上有四個零點.
其中正確命題的序號是     (填上你認為正確的所有序號)

查看答案和解析>>

同步練習冊答案