已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實(shí)常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)a>0時(shí),函數(shù)f(x)有三個(gè)不同的零點(diǎn),證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個(gè)非零實(shí)數(shù)根為x1,x2.試問是否存在實(shí)數(shù)m,使得m2+tm+1≤|x1-x2|對(duì)任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.
【答案】分析:(I)求導(dǎo)函數(shù),對(duì)參數(shù)a進(jìn)行討論,利用導(dǎo)數(shù)的正負(fù),確定函數(shù)的單調(diào)區(qū)間;
(II)確定f(x)的極大值為f(0)=a+b,f(x)的極小值為f(a)=a+b-a3,要使f(x)有三個(gè)不同的零點(diǎn),則,從而得證;
(III)先確定|x1-x2|=,并求得其最小值,假設(shè)存在實(shí)數(shù)m滿足條件,則m2+tm+1≤(min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,從而可求m的范圍.
解答:(I)解:∵f′(x)=6x2-6ax=6x(x-a),
當(dāng)a=0時(shí),f′(x)=6x≥0,于是f(x)在R上單調(diào)遞增;
當(dāng)a>0時(shí),x∈(0,a),f′(x)<0,得f(x)在(0,a)上單調(diào)遞減;
x∈(-∞,0)∪(a,+∞),f′(x)>0,得f(x)在(-∞,0),(a,+∞)上單調(diào)遞增;
當(dāng)a<0時(shí),x∈(a,0),f′(x)<0,得f(x)在(0,a)上單調(diào)遞減;
x∈(-∞,a)∪(0,+∞),f′(x)>0,得f(x)在(-∞,a),(0,+∞)上單調(diào)遞增.
綜上所述:當(dāng)a=0時(shí),f(x)的增區(qū)間為(-∞,+∞);
當(dāng)a>0時(shí),f(x)的增區(qū)間為(-∞,0),(a,+∞),f(x)的減區(qū)間為(0,a);
當(dāng)a<0時(shí),f(x)的增區(qū)間為(-∞,a),(0,+∞),f(x)的減區(qū)間為(a,0).…(3分)
(II)證明:當(dāng)a>0時(shí),由(I)得f(x)在(-∞,0),(a,+∞)上是增函數(shù),f(x)在(0,a)上是減函數(shù);
則f(x)的極大值為f(0)=a+b,f(x)的極小值為f(a)=a+b-a3
要使f(x)有三個(gè)不同的零點(diǎn),則,即
可得-a<b<a3-a.…(8分)
(III)解:由2x3-3ax2+a+b=x3-2ax2+3x+a+b,得x3-ax2-3x=0即x(x2-ax-3)=0,
由題意得x2-ax-3=0有兩非零實(shí)數(shù)根x1,x2,則x1+x2=a,x1x2=-3,
∴|x1-x2|=
∵f (x)在[1,2]上是減函數(shù),
∴f′(x)=6x2-6ax=6x(x-a)≤0在[1,2]上恒成立,其中x-a≤0即x≤a在[1,2]上恒成立,
∴a≥2.
≥4.
假設(shè)存在實(shí)數(shù)m滿足條件,則m2+tm+1≤(min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,
,解得≤m≤
∴存在實(shí)數(shù)m滿足條件,此時(shí)m∈[].  …(14分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查分類討論的數(shù)學(xué)思想,考查函數(shù)的極值與最值,考查恒成立問題,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案