如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為。一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D。
(1)求橢圓和雙曲線的標準方程
(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1
(3)是否存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立?
若存在,求的值,若不存在,請說明理由。
(Ⅰ)由題意知,橢圓離心率為,得,又,得,,所以所以橢圓的標準方程為; ……2
所以橢圓的焦點坐標為(,0),因為雙曲線為等軸雙曲線,且頂點是該橢圓的焦點,
所以該雙曲線的標準方程為。 …………4
(Ⅱ)設點P(,),=,=,∴=…6
點P(,)在雙上,有,即,∴=1 ……8
(Ⅲ)假設存在常數(shù),使得恒成立,則由(Ⅱ)知,所以設直線AB的方程為,則直線CD的方程為,
由方程組消y得:,設,,
則由韋達定理得: ……………9
所以|AB|==,同理可得 ……………10
|CD|===, …………11
又因為,
所以有=+=,
所以存在常數(shù),成立。
【解析】略
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分)
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的
左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢
圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點
分別 為和
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?
若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆山西大學附中高三4月月考理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆廣東省高二下期中文科數(shù)學試卷(解析版) 題型:解答題
如圖,已知橢圓的離心率為,且經(jīng)過點平行于的直線在軸上的截距為,與橢圓有A、B兩個
不同的交點
(Ⅰ) 求橢圓的方程;
(Ⅱ) 求的取值范圍;
(III)求證:直線、與軸始終圍成一個等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆度黑龍江龍東地區(qū)第一學期高二期末理科數(shù)學試卷 題型:解答題
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為。一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D。
(Ⅰ)求橢圓和雙曲線的標準方程
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1
(Ⅲ)是否存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com