若f(m)=
n
i=0
mi
C
i
n
,則
log2f(3)
log2f(1)
=
3
3
分析:結(jié)合二項(xiàng)式定理可得f(m)=
n
i=0
mi
C
i
n
=(1+m)n,代入利用對數(shù)的運(yùn)算性質(zhì)可求
解答:解:∵f(m)=
n
i=0
mi
C
i
n
=(1+m)n
log2f(3)
log2f(1)
=
log2(1+m)3
log2(1+m)
=3
故答案為:3
點(diǎn)評:本題主要考查了二項(xiàng)展開式的通項(xiàng)的應(yīng)用及對數(shù)的運(yùn)算性質(zhì)的應(yīng)用,解題的關(guān)鍵是發(fā)現(xiàn)f(m)=
n
i=0
mi
C
i
n
=(1+m)n
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC的邊AB邊所在直線的方程為x-3y-6=0,M(2,0)滿足
BM
=
MC
,點(diǎn)T(-1,1)在AC邊所在直線上且滿足
AT
=
AB

(I)求AC邊所在直線的方程;
(II)求△ABC外接圓的方程;
(III)若動(dòng)圓P過點(diǎn)N(-2,0),且與△ABC的外接圓外切,求動(dòng)圓P的圓心的軌跡方程.
請注意下面兩題用到求和符號:
f(k)+f(k+1)+f(k+2)+…+f(n)=
n
i=k
f(i)
,其中k,n為正整數(shù)且k≤n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①“sinα>sinβ”是“α>β”的既不充分又不必要條件;
②若f(x)在某區(qū)間M上為增函數(shù),則對于該區(qū)間上的任意x,總有f′(x)>0;
③設(shè)空間任意一點(diǎn)O和不共線三點(diǎn)A、B、C,若點(diǎn)P滿足向量關(guān)系
OP
=x
OA
+y
OB
+z
OC
,則P、A、B、C四點(diǎn)共面;
④若取值為x1,x2,x3…xn的頻率分別為p1,p2,p3…pn,則其平均數(shù)為
n
i=1
xipi

其中所有真命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•衡陽模擬)我們規(guī)定滿足“f(-x)=-f(x)”的分段函數(shù)叫“對偶函數(shù)”.已知函數(shù)f(x)=
x2+4x,x≥0
g(x),x<0
是對偶函數(shù).
(1)g(x)=
4x-x2
4x-x2
;
(2)若f[
n
i=1
1
i(i+1)
-
m
10
]>0對任意的n∈N*都成立,則最大正整數(shù)m是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若
h(x)
xk
在[k,+∞]上為增函數(shù),則稱h(x)為“k次比增函數(shù)”,其中k∈N*,已知f(x)=eax
(Ⅰ)若f(x)是“1次比增函數(shù)”,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=
1
2
時(shí),求函數(shù)g(x)=
f(x)
x
在[m,m+1](m>0)上的最小值;
(Ⅲ)求證:
n
i=1
1
i•(
e
)
i
7
2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題:
①“sinα>sinβ”是“α>β”的既不充分又不必要條件;
②若f(x)在某區(qū)間M上為增函數(shù),則對于該區(qū)間上的任意x,總有f′(x)>0;
③設(shè)空間任意一點(diǎn)O和不共線三點(diǎn)A、B、C,若點(diǎn)P滿足向量關(guān)系
OP
=x
OA
+y
OB
+z
OC
,則P、A、B、C四點(diǎn)共面;
④若取值為x1,x2,x3…xn的頻率分別為p1,p2,p3…pn,則其平均數(shù)為
n


i=1
xipi

其中所有真命題的序號是______.

查看答案和解析>>

同步練習(xí)冊答案