分析:(1)f′(x)=(ax
2-x-a+1)e
x=(ax+a-1)(x-1)e
x,對a分類討論:當a=0時,f′(x)=-(x-1)e
x,即可得出單調(diào)性;當a>0時,f′(x)=a
(x-)(x-1)e
x,令
=1,解得a=
.當a=
時,當
0<a<時,當a
>時,比較
與1的大小關系即可得出單調(diào)性;
(2)當a=1時,函數(shù)f(x)在(0,1)上單調(diào)遞減;在(1,2)上單調(diào)遞增.對任意x
1∈(0,2),都有f(x
1)≥f(1)=e.又對任意x
1∈(0,2),存在x
2∈(1,2),使f(x
1)≥g(x
2),e≥g(x
2),即x
2∈(1,2)時有解,g(x
2)=
,即存在x
2∈(1,2),使得
b≤.令h(x)=
,利用導數(shù)研究其單調(diào)性極值與最值即可得出.
解答:
解:(1)f′(x)=(ax
2-x-a+1)e
x=(ax+a-1)(x-1)e
x,
a=0時,f′(x)=-(x-1)e
x,
∴當x>1時,f′(x)<0,函數(shù)f(x)單調(diào)遞減;當x<1時,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
當a>0時,f′(x)=a
(x-)(x-1)e
x,
令
=1,解得a=
.
當a=
時,
f′(x)=(x-1)2ex≥0,函數(shù)f(x)在R上單調(diào)遞增;
當
0<a<時,
>1,x∈(-∞,1)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
x∈(1,),f′(x)<0,函數(shù)f(x)單調(diào)遞減;
x∈(,+∞),f′(x)>0,函數(shù)f(x)單調(diào)遞增.
當a
>時,
<1,x∈(-∞,
)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
x∈(,1),f′(x)<0,函數(shù)f(x)單調(diào)遞減;x∈(1,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
綜上可得:當a=0時,當x>1時,函數(shù)f(x)單調(diào)遞減;當x<1時,函數(shù)f(x)單調(diào)遞增.
當a=
時,函數(shù)f(x)在R上單調(diào)遞增;
當
0<a<時,x∈(-∞,1)時,函數(shù)f(x)單調(diào)遞增;
x∈(1,),函數(shù)f(x)單調(diào)遞減;
x∈(,+∞),函數(shù)f(x)單調(diào)遞增.
當a
>時,x∈(-∞,
)時,函數(shù)f(x)單調(diào)遞增;
x∈(,1),函數(shù)f(x)單調(diào)遞減;x∈(1,+∞)時,函數(shù)f(x)單調(diào)遞增.
(2)當a=1時,函數(shù)f(x)在(0,1)上單調(diào)遞減;在(1,2)上單調(diào)遞增.
對任意x
1∈(0,2),都有f(x
1)≥f(1)=e.
又對任意x
1∈(0,2),存在x
2∈(1,2),使f(x
1)≥g(x
2),
∴e≥g(x
2),即x
2∈(1,2)時有解,
g(x
2)=
,∴存在x
2∈(1,2),使得
≤e,即存在x
2∈(1,2),使得
b≤.
令h(x)=
,x∈(1,2),h′(x)=
,
令h′(x)=0,解得x=
,
當x∈
(1,)時,h′(x)>0,函數(shù)h(x)單調(diào)遞增;當x∈
(,2)時,h′(x)<0,函數(shù)h(x)單調(diào)遞減.
∴當x=
時,h(x)的最大值為
h()=
,
綜上可得:實數(shù)b的取值范圍是
(-∞,].