已知數(shù)列{an}滿足an+2=-an(n∈N*),且a1=1,a2=2,則該數(shù)列前2002項(xiàng)的和為( )
A.0
B.-3
C.3
D.1
【答案】分析:數(shù)列an為一個(gè)有規(guī)律的數(shù)列,由an+2=-an(n∈N*),我們可以得出規(guī)律每四項(xiàng)的和是0,從而解出此題.
解答:解:由題意,我們發(fā)現(xiàn):a1=1,a2=2,a3=-a1=-1,a4=-a2=-2,a5=-a3=1,
a6=-a4=2,,a2001=-a1999=1,a2002=-a2000=2,a1+a2+a3+a4=0.
∴S2002=a1+a2+a3+…+a2002=a2001+a2002=a1+a2=1+2=3
故選C.
點(diǎn)評(píng):本題主要考查數(shù)列求和的知識(shí)點(diǎn),通過(guò)已知數(shù)列,尋找規(guī)律,學(xué)生在尋找求和規(guī)律時(shí)容易出現(xiàn)錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案