下列命題:
①G2=ab是三個數(shù)a、G、b成等比數(shù)列的充要條件;
②若y=f(x)不恒為0,且對于?x∈R,都有f(x+2)=-f(x),則f(x)是周期函數(shù);
③對于命題p:?x∈R,2x+3>0,則¬p:?x0∈R,2x0+3<0;
④直線l:
2
x+
2
y+1+a=0與圓C:x2+y2=a(a>0)相離.
其中不正確命題的個數(shù)為(  )
A、1B、2C、3D、4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知平行四邊形ABCD中,
AD
=(2,8),
AB
=(-3,4),對角線AC與BD相交于點M,則
AM
的坐標為( 。
A、(-
1
2
,6)
B、(-
1
2
,6)
C、(
1
2
,-6)
D、(
1
2
,6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一無窮等比數(shù)列{an}各項的和為
3
2
,第二項為
1
3
,則該數(shù)列的公比為( 。
A、
1
3
B、
2
3
C、-
1
3
D、
1
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=sin4x是最小正周期為
π
2
的周期函數(shù),命題q:函數(shù)y=tanx在(
π
2
,π)上單調(diào)遞減,則下列命題為真命題的是(  )
A、p∧q
B、(¬p)∨q
C、(¬p)∧(¬q)
D、(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“?a>0,有ea≥1成立”,則¬p為( 。
A、?a≤0,有ea≤1成立B、?a≤0,有ea≥1成立C、?a>0,有ea<1成立D、?a>0,有ea≤1成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個結論:
①二項式(x-
1
x2
6的展開式中,常數(shù)項是-15;
②由直線x=
1
2
,x=2,曲線y=
1
x
及x軸所圍成的圖形的面積是2ln2;
③已知隨機變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21;
④設回歸直線方程為y=2-2.5x,當變量x增加一個單位時,y平均增加2個單位. 
其中正確結論的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題是假命題的是(  )
A、?α,β∈R,使tan(α+β)=tanα+tanβ成立B、?α,β∈R,使cos(α+β)<cosα+cosβ成立C、△ABC中,“A<B”是“sinA<sinB”成立的充要條件D、?φ∈R,函數(shù)y=sin(2x+φ)都不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“a=1”是“函數(shù)f(x)=|x-a|+b(a,b∈R)在區(qū)間[1,+∞)上為增函數(shù)”的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)和g(x)的導函數(shù)分別為f′(x),g′(x),則下面結論正確的是( 。
①若f′(x)>g′(x),則函數(shù)f(x)的圖象在函數(shù)g(x)的圖象上方;
②若函數(shù)f′(x)與g′(x)的圖象關于直線x=a對稱,則函數(shù)f(x)與g(x)的圖象關于點(a,0)對稱;
③函數(shù)f(x)=f(a-x),則f′(x)=-f′(a-x);
④若f′(x)是增函數(shù),則f(
x1+x2
2
)≤
f(x1)+f(x2)
2
A、①②B、①②③
C、③④D、②③④

查看答案和解析>>

同步練習冊答案